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A B S T R A C T

The Bonded Discrete Element Method(BDEM) has raised interests in the graphics community in
recent years because of its good performance in fracture simulations. However, current explicit
BDEM usually needs to work under very small time steps to avoid numerical instability. We propose a
new BDEM, namely Rod-BDEM (RBDEM), which uses Cosserat energy and yields integrable forces
and torques. We further derive a novel Cosserat rod discretization method to effectively represent
the three-dimensional topological connections between discrete elements. Then, a complete implicit
BDEM system integrating the appropriate fracture model and contact model is constructed using the
implicit Euler integration scheme. Our method allows high Young’s modulus and larger time steps in
elastic deformation, breaking, cracking, and impacting, achieving up to 8 times speed up of the total
simulation.

1. Introduction
Bonded Discrete Element Method(BDEM) is a sim-

ple and effective method for modeling the deformation of 
solids including granular matter, rocks and cementitious 
material[43], and is especially good at modeling the fracture 
of solids. As a particle method, it does not make a contin-
uum assumption, i.e each particle does not represent a small 
continuum, but directly represents a quasi-rigid body. Due 
to the discontinuity of the BDEM system, it is naturally 
used for fracture simulation, capable of simulating crack 
generation and multiple fractures efficiently. Bonds are used 
to connect adjacent particles to simulate elastic behavior, 
and the failure of bonds is controlled by a local fracture 
model. In the graphics community, Lu et al. [30] reformu-
lated BDEM by using quaternions to represent orientation, 
and avoided additional storage of incremental force and 
torque. They simulated a wide range of materials including 
elastic bodies, thin shell structures, anisotropic materials 
and textile. However, conventionally, BDEM uses explicit 
integration methods, such as explicit Euler or velocity 
verlet, which need to use very small time steps to ensure 
numerical stability.

A common implicit integration scheme is the im-
plicit Euler method that allows larger time steps and is 
widely used in different methods such as mass-spring 
system[4], Finite Element Method(FEM)[49] and Material 
Point Method(MPM)[21]. For conservative internal forces, 
the equivalent energy optimization formulation can be de-
rived by the implicit Euler method[34], and then iteratively 
solved by nonlinear optimization methods. A few changes 
can be introduced to this process to construct linear systems 
which are easier to solve[29, 7, 36]. However, it is not 
straightforward to apply implicit Euler method to BDEM 
in [30] because their torques can not be expressed as 
negative gradients of energy. They calculated the twist 
torque from the difference in orientation between bonded
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particles, resulting in an asymmetric torque derivative
matrix in orientation level. Therefore, some more complex
iterative techniques must be employed, such as GMRES,
BiCGSTAB. In addition, even though we construct a linear
system in angular velocity level following Baraff et al.[4], it
will still lead to the asymmetry of the coefficient matrix.

In this paper, we present a novel implicit-friendly
BDEM by redesigning the bond model between discrete
elements with the Cosserat rod, which yields a symmetric
energy Hessian matrix. We derive an energy optimization
formulation for the implicit BDEM where the orientation
of discrete elements are represented in quaternion forms.
Inspired by the one-dimensional continuum Cosserat rod
discretization model, we derive a new Cosserat rod dis-
cretization representation, which can efficiently handle the
three-dimensional topological connection between discrete
elements. Large time-step simulations are then achieved by
jointly solving the optimal position 𝐱 and orientation 𝐪 of
the particles, which can be two orders of magnitude larger
than those in traditional explicit BDEM, achieving up to 8
times speed up of the total simulation. We quantitatively
verify through experiments that our proposed method can
produce consistent results with previous work. A wide range
of phenomena such as elastic deformation, breaking, crack-
ing, and impacting can be stably and efficiently simulated
by our approach.

Our main contributions are:

• An explicit BDEM solver with the Cosserat energy
that produces analytically integrable elastic forces
and torques, and symmetric torque derivatives.

• A new Cosserat rod discretization method can ef-
ficiently represent the three-dimensional topological
connection between particles.

• A complete implicit BDEM system is constructed
integrating appropriate fracture model and contact
model. The solver can simulate faster at high Young’s
modulus than previous explicit methods.
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2. Related Works
2.1. Discrete Element Method

Discrete Element Method(DEM) was proposed by [14]
to simulate rock and granular material. It has been widely
used in various fields in the past decades, such as gran-
ular material mechanics, rock and soil mechanics, mining
engineering, food industry, etc. DEM also inspired many
works in graphics to model fluid-solid coupling[46, 17, 60],
granular materials[5, 65] and solid material[30]. DEM does
not make a continuum assumption, and each of its elements
is a quasi-rigid body. Considering this natural discontinuity,
BDEM was developed by Potyondy and Cundall [43] to
capture the fracture of solids. They connected discrete
elements using parallel bond model, allowing the simulation
of deformable objects. Some improvements were introduced
into BDEM, such as the use of beam models. It connects
the centers of two discrete elements using a homogeneous,
cylindrical beam with no volume or mass. Some classical
beam models are used, such as: Euler-Bernoulli beam[9, 1]
and Timoshenko beam[8]. The rod model we adopt can be
considered as a nonlinear generalisation of the Timoshenko
beam[26]. Lu et al.[30] However, to the best of our knowl-
edge, there is no work focused on the implicit integration
of BDEM. In DEM, almost all existing implicit methods
only consider implicit update of the linear velocity and not
the angular velocity[48, 57], which limits the time step size.
Very recently, some implicit integral based DEM simulators
considering angular velocity have been proposed. IKari et
al.[22] used Taylor expansion to obtain a linear implicit
DEM. Klerk et al.[15] used discrete Lagrange-d’Alembert
principle to solve an optimization problem of the DEM.

2.2. Rod simulation
Rod simulation has a long history in graphics, mainly

including Kirchhoff rods and Cosserat rods. The Kirch-
hoff rod can simulate the bending and twisting effects
between two Lagrangian particles with a smaller DOF
after discretization, and is widely used in slender rod and
hair simulation[6, 17]. In contrast, the Cosserat rod can
additionally simulate shearing effect, making it perform
well on short bonds. The Cosserat rod was first introduced
to the graphics community by Pai[40] for virtual surgery.
Spillman et al. used quaternions to represent orientation
in [54], discretize the extensible Cosserat rod and solving
it through FEM in explicit integration. Some fast sim-
ulation methods developed by the graphics community
were applied to the simulation of rods, by introducing the
quaternion-based orientation in the corresponding methods,
such as Position Based Dynamics(PBD)[24] and Projec-
tive Dynamics(PD)[53]. They calculate the corresponding
constraints or energies according to [25, 26]. Some meth-
ods of discretizing the Cosserat rod also use the implicit
scheme. Wen et al.[62] used rh-Adaptive Discretization for
sharp contacts. Zhao et al.[66] used the orientation of axis-
angle representation to solve the problem of quaternion
representation with redundant degrees of freedom. They
further transformed the Cosserat rod into an inextensible

Kirchhoff rod using a compact representation that satisfies
inextensible and unshearble constraints. However, in this
paper, we employ discrete elements rather than rod elements
to model volumetric solids. The Cosserat rods are utilized
solely as virtual bonds to ensure correct elastic response
between the bonded particles.

2.3. Fracture simulation
Solid deformation and fracture have been studied for

many years since the work of Terzopoulos and Fleischer[55].
There are a large number of methods focus on fracture
simulation with good results in graphics. According to
the discretization method, there are mainly mesh-based
methods and particle-based methods, including FEM[39,
38, 42, 32], Extended FEM(XFEM)[23, 12], Boundary
Element Method(BEM)[18, 19, 67], peridynamics[50, 51,
27, 20, 10, 31], MPM[64, 59, 63, 16] and Moving Least
Squares(MLS)[41, 33]. However, particle-based methods,
including BDEM, are attracting increasing attention be-
cause they work well in simulating large topological changes
and debris generated by the impact. Here we mainly discuss
particle-based methods.

In the BDEM mentioned before, Lu et al.[30] success-
fully simulated the brittle fracture of elastic body, thin-
shell structures, anisotropic material and textile. Peridy-
namics constructs its kinetic equations through the integral
formula. Brittle[27, 10] and ductile fracture[10] have been
well simulated through peridynamics in animation. Peridy-
namics can be divided into bond-based[50, 51] and state-
based[52] peridynamics. The force between neighboring
two particles in state-based peridynamics is determined by
all the particles in their neighborhood. In bond-based peri-
dynamics, the force is determined only by the two bonded-
particles. BDEM has a close relationship with bond-based
peridynamics. Specifically, BDEM takes particle rotation
into account so that bending and twisting can be modeled
by bonds between adjacent particles. Therefore, BDEM
requires significantly fewer bonds than peridynamics and
can directly model slender objects like ropes. Apart from
that, BDEM has better scaling consistency than bond-based
peridynamics according to Lu et al.[30].

Oriented particles was proposed by another related
work[35], which used particles with orientation to effi-
ciently simulate the deformation of solids. However, it is
a shape matching method that lacks physical meaning, and
the orientation particles are coupled with shape matching
instead of orientation constraints.

As a hybrid method, MPM is also effective in simulating
fracture in a range of materials. Regardless of numerical
fracture, the key concept of MPM fracture simulation is
to establish a phase-field equation for dynamic material
damage evolution and discretize it using MPM. However,
MPM fracture simulation have the problem that the fracture
surface is not sharp[64]. Some methods have been proposed
to solve it, including surface reconstruction while calculat-
ing stress[16] or using Lagrangian force model[59, 63].
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3. Rod-Bonded Discrete Element Method

(a) (b)

Figure 1: (a) shows the discrete element representation,
where the discrete element is a sphere described by 𝐱𝑖, ori-
entation 𝐪𝑖, radius 𝑟𝑖 and density 𝜌𝑖. (b) shows the topological
connection between discrete elements, where one particle
can be connected to multiple particles by blue bonds.

Discrete element in 3D space can generally be consid-
ered as a small sphere 𝑖 with six Degrees of Freedom (DOF)
of position and orientation. BDEM describes a solid mate-
rial as a collection of discrete elements connected by bonds.
As shown in Fig. 1b, one element can connect multiple
elements through bonds. These virtual bonds persist after
being initialized between two adjacent discrete elements.
There are two forms of interaction between discrete ele-
ments, either connected by a bond, or in contact without a
bond. These two interactions do not occur at the same time
to ensure correct elastic and granular properties in different
parts of the material. In general, BDEM will calculate forces
and torques based on the state of the connected particles,
relative translation and rotation[30, 43], and then update the
particle’s position and orientation according to the Newton-
Euler equation.

However, as mentioned before, the twist torque in [30]
produces an asymmetric torque derivative matrix. On the
contrary, we hope to find a local constitutive model that
yields a symmetric Hessian matrix while accurately sim-
ulating the complex deformations caused by stretching,
shearing, bending and twisting effects between bonded
particles. The Geometrically exact Cosserat Rod[25, 26]
can meet the above requirements, so we replace the bond
in the BDEM local constitutive model with the Cosserat
rod and finally propose the Rod-Bonded Discrete Element
Method(RBDEM).

In the following subsections, we first briefly recap the
governing equations in Sec. 3.1, then we derive an optimiza-
tion formulation including inertia and potential from the
semi-implicit Euler integration scheme in sec. 3.2. Inspired
by the one-dimensional continuum Cosserat rod model[26],
we derive a novel Cosserat rod discretization method that
efficiently handles 3D topological connections, which is
described in Sec. 3.3. Fracture and contact models are then
described in Sec. 3.4 and Sec. 3.5, respectively.

3.1. Governing Equations
DEM simulates the behavior of a large number of

discrete elements as they interact with each other and
environment. For an individual discrete element 𝑖 in DEM,

its governing equation is relatively simple, which is the
Newton-Euler equation of rigid body motion:

𝑑𝐱𝑖
𝑑𝑡

= 𝐯𝑖 (1)

𝑑𝐯𝑖
𝑑𝑡

= 𝐅𝑖
𝑚𝑖

(2)

𝑑𝐪𝑖
𝑑𝑡

= 1
2

[

0
𝝎𝑖

]

𝐪𝑖 (3)

𝑑𝝎𝑖
𝑑𝑡

= 𝐈−1𝑖 𝐓𝑖. (4)

where 𝐱𝑖 and 𝐪𝑖 denote the position and the orientation
represented by the quaternion, 𝐅𝑖 and 𝐓𝑖 are the resultant
force and torque of the discrete element 𝑖, 𝑚𝑖 and 𝐈𝑖 repre-
sents mass and moment of inertia, and 𝐯𝑖 and 𝝎𝑖 are linear
velocity and angular velocity. Note that 𝝎𝑖 and 𝐓𝑖 are all
in world frame. Since the discrete elements here are all
spheres, their moment of inertia is an exchangeable diagonal
matrix and does not change with time,

𝐈𝑖 =
⎡

⎢

⎢

⎣

𝐼1
𝐼2

𝐼3

⎤

⎥

⎥

⎦

, (5)

where 𝐼1 = 𝐼2 = 𝐼3 = 2
5𝑚𝑟

2. For other non-spherical
shapes, the cross product term 𝐈−1𝑖 ((𝐈𝑖𝝎𝑖) × 𝝎𝑖) needs to
be added to the right-hand side of Eqn. (4) like [3]. In this
work, we adopt a same fixed radius 𝑟 for every particle. The
multiplication of two quaternions in Eqn. (3) is performed
using the default quaternion multiplication law.

3.2. Semi-Implicit Euler Method
We begin with Eqns. (1, 2) for the translational motions.

An implicit Euler intergration scheme for the discrete linear
velocity update is as follow:

𝐱(𝑛+1)𝑖 = 𝐱(𝑛)𝑖 + ℎ𝐯(𝑛+1)𝑖 , (6)

𝐯(𝑛+1)𝑖 = 𝐯(𝑛)𝑖 + ℎ𝐌−1
𝑖 𝐅(𝑛+1)

𝑖 , (7)

where 𝐌𝑖 is the diagonal mass matrix, and ℎ is the constant
simulation time step.

This system is equivalent to an optimization problem as
discussed by Martin et al.[34]:

min
𝐱(𝑛+1)𝑖

1
2ℎ2

∑

𝑖

‖

‖

‖

𝐱(𝑛+1)𝑖 − 𝐬(𝑛)𝑖
‖

‖

‖𝐌𝑖
+ 𝐸(𝑛+1), (8)

where 𝐬(𝑛)𝑖 = 𝐱(𝑛)𝑖 + ℎ𝐯(𝑛)𝑖 . The first term of Eqn. (8) is the
linear inertial potential, which attracts 𝐱(𝑛+1)𝑖 to 𝐬(𝑛)𝑖 . The
second term is the elastic potential with respect to 𝐱.

To obtain a similar energy optimization function that is
consistent with the form of Eqn. (8) for rotation updates, we
begin with following semi-implicit Euler integration scheme
for angular velocity of the particle 𝑖:

𝐪(𝑛+1)𝑖 = 𝐪(𝑛)𝑖 + ℎ
2

[

0
𝝎(𝑛+1)
𝑖

]

𝐪(𝑛)𝑖 , (9)
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𝝎(𝑛+1)
𝑖 = 𝝎(𝑛)

𝑖 + ℎ𝐈−1𝑖 𝐓(𝑛+1)
𝑖 . (10)

We prove in the supplemental document that this system
is equivalent to an optimization problem as follows:

min
𝐪(𝑛+1)

2
ℎ2

∑

𝑖

‖

‖

‖

𝐪(𝑛+1)𝑖 �̄�(𝑛)𝑖 − 𝐮(𝑛)𝑖
‖

‖

‖�̃�𝑖
+ 𝐸(𝑛+1), (11)

where �̄�(𝑛)𝑖 and 𝐮(𝑛)𝑖 only depend on previously computed

states, �̃�𝑖 is defined as �̃�𝑖 =
[

0
𝐈𝑖

]

. 𝐮𝑖 is defined as 𝐮(𝑛)𝑖 =

𝐪𝐼 + ℎ
2

[

0
𝝎(𝑛)
𝑖

]

, where 𝐪𝐼 is an identity quaternion. The

second term is the elastic potential, which is the sum of all
potentials associated with the orientation constraints. Using
Eqn. (9), the first term can become as follows, 1

2 (𝝎
𝑛+1
𝑖 −

𝝎𝑛
𝑖 )

𝑇 𝐈𝑖(𝝎𝑛+1
𝑖 −𝝎𝑛

𝑖 ) , which is the rotational inertial potential.
Since the two optimization problems of Eqn. (8,11) find

stationary points about 𝐱 and 𝐪 respectively, we can combine
the two equations to solve them jointly,

𝐸𝑇 𝑜𝑡𝑎𝑙 = min
𝐱(𝑛+1),𝐪(𝑛+1)

1
2ℎ2

∑

𝑖

‖

‖

‖

𝐱(𝑛+1)𝑖 − 𝐬(𝑛)𝑖
‖

‖

‖𝐌𝑖

+ 2
ℎ2

∑

𝑖

‖

‖

‖

𝐪(𝑛+1)𝑖 �̄�(𝑛)𝑖 − 𝐮(𝑛)𝑖
‖

‖

‖�̃�𝑖
+ 𝐸(𝑛+1).

(12)

Intuitively, Eqn. (12) describes a balance between linear
inertial potential, rotational inertial potential, and elastic
potentials. Its Hessian matrix is the second order derivative
of the energy, which must be symmetric. The elastic poten-
tial 𝐸(𝑛+1) on the right-hand side of Eqn. (12) contains the
energy of our newly designed bond and the energy gener-
ated by some constraints, including: attachment constraints,
boundary constraints, and unit quaternion constraints. For
the convenience of description, we also include the contact
potential and the gravitational potential into 𝐸. For simplic-
ity and speed, we use a linear implicit scheme to solve Eqn.
(12). We also use the Gauss-Newton method to approximate
the Hessian of the Cosserat energy. We will discuss the
numerical solution of Eqn. (12) in Sec.4.2. As we discuss
in the supplemental document, the torques in [30] is not
integrable, since their torque derivative matrix in orientation
level is asymmetric. So the implicit integral of [30] could
not be converted into the optimization formulation like Eqn.
(12).

3.3. Rod As a Bond
As mentioned above, BDEM in [30] results in an asym-

metric Hessian matrix. The Cosserat rod can not only lead
to a symmetrical forces and torques derivative matrix, but
also model various deformations between bonded discrete
elements. In order to make the discretized model efficiently
handle the 3D topological connections between discrete
elements, we derive a new discretization method of the
Cosserat rod.

Cosserat theory models rods with arc length parametrized
smooth centerline, 𝐫(𝑠) ∶ [0, 𝑙] → ℝ3. Every point on the

centerline has an orthonormal basis {𝐝1(𝑠),𝐝2(𝑠),𝐝3(𝑠)} as
shown in Fig. 2, which is also called directors. {𝐞1, 𝐞2, 𝐞3}
represent the orthonormal basis in the fixed material frame.
Here the unit quaternion 𝐪(𝑠) is commonly used to represent
rotation. The directors could be represented by the rotation

of the basis vectors as follows
[

0
𝐝𝑘

]

= 𝐪
[

0
𝐞𝑘

]

�̄�, where

�̄� indicates the conjugate of 𝐪. The unit quaternion 𝐪(𝑠)
varies smoothly with 𝑠 in rotation space 𝑆𝑂(3) and so do
the directors. The cross section of the rod is circular and we
assume no deformation of the cross section.

Figure 2: Diagram of the directors in Cosserat rod along the
centerline.

It is to be noted that the Cosserat rod can be viewed as
a generalization of the Kirchhoff rod. For the Kirchhoff rod,
𝐝3(𝑠) is strictly along the tangential direction of centerline,
i.e. 𝐝3(𝑠) = 𝜕𝑠𝐫, while 𝐝1(𝑠),𝐝2(𝑠) are along the normal
plane of centerline at 𝑠. This so-called unshearable assump-
tion is also used in beam theory such as Euler-Bernoulli
beam. For the Cosserat rod, there is no such assumption.
The movement of 𝐝3(𝑠) is controlled by the "soft constraint"
and is limited near the tangent of the centerline, the corre-
sponding normal plane is no longer always perpendicular
to the centerline. The benefit of using the Cosserat rod is
that shear deformation is taken into account by this soft
constraint, allowing us to correctly simulate deformation of
bonds, especially short bonds in BDEM[11].

In the following subsections, we will demonstrate how
we efficiently extend the above Cosserat model into a 3D
topological discretization for BDEM. We recap the elastic
potentials from [26] in sec.3.3.1, and then introduce our
enhanced discretization for handling 3D topological con-
nections in sec.3.3.2.

3.3.1. Continuous Potential
Stretch and shear potential in Cosserat rods is defined

using linear elastic constitutive law[26]

𝐸𝑆𝐸 = 1
2 ∫

𝑙

0
𝚪𝑇𝐶Γ𝚪𝑑𝑠, (13)

where 𝐶Γ is a matrix we will introduce in Eqn.(17) later, 𝚪
is the strain measure, defined in material frame as

𝚪 = 𝑅(𝐪)𝑇 𝜕𝑠𝐫 − 𝐞3. (14)

𝜕𝑠𝐫 is the extensible tangent vector on the centerline. We
have ‖

‖

‖

𝜕𝑠𝐫0
‖

‖

‖

= 1 for any 𝑠 in the initial configuration.
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𝑅(𝐪)𝑇 𝜕𝑠𝐫 means transform 𝜕𝑠𝐫 from the world frame to
the material frame. This strain measures the deviation of
the curve tangent vector from director 𝐞3, including angle
deviation(shearing) and length deviation(stretching or com-
pressing). We have 𝚪 = 0 in the initial configuration, i.e.
𝑅(𝐪0)𝑇 𝜕𝑠𝐫0 = 𝐞3, which means that at the initial moment,
the centerline is perpendicular to the cross section for any 𝑠.

Bend and twist potential is defined in a similar form:

𝐸𝐵𝑇 = 1
2 ∫

𝑙

0
𝛀𝑇𝐶Ω𝛀𝑑𝑠, (15)

where 𝛀 is the material curvature vector, also called the
Darboux vector. The Darboux vector describes the amount
by which the basis changes when the curve parameter 𝑠
changes. A similar definition is angular velocity 𝝎, which
describes the amount by which the basis changes when the
time changes. It can be defined in material frame as:

[

0
𝛀

]

= 2�̄�𝜕𝑠𝐪, (16)

which is formally consistent with the angular velocity[24].
For a cylindrical bond, 𝐶Γ and 𝐶Ω are respectively the

following diagonal matrices[26],

𝐶Γ =
⎡

⎢

⎢

⎣

𝐴1
𝐴2

𝑆

⎤

⎥

⎥

⎦

𝑎𝑛𝑑 𝐶Ω =
⎡

⎢

⎢

⎣

𝐼𝑟1
𝐼𝑟2

𝐽 𝑟

⎤

⎥

⎥

⎦

,

(17)

where 𝑆 = 𝜋𝑟2, 𝐼𝑟1 = 𝐼𝑟2 = 𝜋𝑟4

4 , 𝐽 𝑟 = 𝜋𝑟4

2 are the

′
𝑗

′
𝑖

area, moments of inertia and polar moment of the rod cross
section, and 𝐴1 = 𝐴2 = 𝜅𝑆 are the effective cross section 
areas, where 𝜅 is the Timoshenko shear correction factor 
depends on the geometry of the beam and its Poisson’s 
ratio[13]. For simplicity, we directly use the approximation
𝜅 = 5∕6 for circular cross section, following the convention 
of [61]. Here the cross section is symmetric, so we set
𝐼𝑟 = 𝐼1

𝑟 = 𝐼2
𝑟 and 𝐴 = 𝐴1 = 𝐴2.  and  are the

Young’s modulus and shear modulus of the rod material,
respectively.

3.3.2. Discretization
Take a small segment of rod as a rod element. The clas-

sic Cosserat rod usually uses the staggered grid approach to 
discretize the rod[54, 58, 24, 53, 66]. It would discretize the 
orientation to the middle of rod element and discretize the 
position to the ends of the rod element. Our discretization 
method is different. Each rod element is defined b y two 
points {𝐱𝑖

′, 𝐱 } and two quaternions{𝐪 , 𝐪′𝑗 }, which represent
the position and orientation of both ends of the rod element. 
We rigidly connect the two ends of the rod to the discrete 
elements as shown in Fig. 3, so that the rod element can 
be totally represented by two connected discrete elements.
We will directly use {𝐱𝑖, 𝐱𝑗 } and {𝐪𝑖, 𝐪𝑗 } to represent rod 
element below. Besides, the radius of the bond cross section
is set with 𝑚𝑖𝑛(𝑟𝑖, 𝑟𝑗 ).

Figure 3: A Cosserat rod element is rigidly connected to
discrete elements. 𝐱, 𝐪 at both ends of the rod element are
controlled by the corresponding discrete elements.

There are two reasons for choosing this form of dis-
cretization. On the one hand, the new discretization method
naturally fits in BDEM where both ends of the bond need
to be controlled. On the other hand, note that we have to
compute the Darboux vector 𝛀 and bend and twist potential
𝐸𝐵𝑇 between the two rod elements using the previous stag-
gered approach. This is no problem for 1D rod simulations,
but for 3D solid simulations, where a particle is connected
to multiple particles and has multiple bonds like in Fig. 1b,
this will heavily reduce efficiency. For example, when a
particle is connected to 𝑛 particles (𝑛 > 1), the staggered
grid requires us to calculate 1

2𝑛 ∗ (𝑛 − 1) number of 𝛀
and 𝐸𝐵𝑇 , and also store the corresponding number of initial
Darboux vectors 𝛀𝟎. On the contrary, the new discretization
allows us to calculate bending and twisting on a single bond,
only needing to calculate 𝑛 number of 𝛀 and 𝐸𝐵𝑇 , avoiding
redundant calculation time.

Using the finite difference method, since the position
and orientation are at both ends of the rod element, the
resulting discrete strain, curvature, and energy are all at the
midpoint of the rod element. The discretization of Eqn. (13)
is defined as:

𝐸𝑆𝐸
𝑖𝑗 = 𝑙

2
𝚪𝑇
𝑖𝑗𝐶

Γ𝚪𝑖𝑗 , (18)

where 𝑙 is the initial length of the rod element. Discrete
strain measure is defined as follows:

𝚪𝑖𝑗 =
1
𝑙
(𝐑(𝐪𝑖𝑗)𝐑(𝐪0𝑖𝑗))

𝑇 (𝐱𝑗 − 𝐱𝑖) − 𝐞3, (19)

where 𝐪0𝑖𝑗 is initial element orientation satisfies initial un-
strained state,

1
𝑙
𝐑(𝐪0𝑖𝑗)

𝑇 (𝐱0𝑗 − 𝐱0𝑖 ) = 𝐞3, (20)

𝐪𝑖𝑗 is defined at the midpoint of the rod element. In contrast
to the widely used linear interpolation for quaternions[54,
24, 53, 66], we use normalized linear interpolation to ensure
that 𝐪𝑖𝑗 is a unit quaternion[45],

𝐪𝑚 = 1
2
(𝐪𝑖 + 𝐪𝑗) 𝑎𝑛𝑑 𝐪𝑖𝑗 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐪𝑚), (21)

where 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(⋅) represents normalization operation.
𝐸𝐵𝑇
𝑖𝑗 and 𝛀𝑖𝑗 are also situated on the midpoint. The

discretization of Eqn. (15) is defined as:

𝐸𝐵𝑇
𝑖𝑗 = 𝑙

2
𝛀𝑇

𝑖𝑗𝐶
Ω𝛀𝑖𝑗 . (22)
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Discrete Darboux vector is defined as follow:

𝛀𝑖𝑗 =
2
𝑙
ℑ(�̄�𝑖𝑗(𝐪𝑗 − 𝐪𝑖)), (23)

where ℑ(⋅) denotes the imaginary part of the quaternion
product.

3.4. Fracture Model
We use the stress-based fracture model in BDEM[43].

This fracture model does not consider the stress state inside
the solid, but calculates the maximum normal stress and
shear stress on the cross section of the bonds. According to
the distribution of stresses on the cross section of the bonds,
they all reach the maximum value at the outermost layer of
the bond[8],

𝜎 = −𝐹 𝑛

𝐴
+

|𝐓𝑏
|𝑟

𝐼𝑟
, (24)

𝜏 =
4|𝐅𝑠

|

3𝑆
+

|𝐓𝑡
|𝑟

𝐽 𝑟 . (25)

The bond will fail if the maximum normal stress and shear
stress exceed the corresponding strength, i.e. 𝜎 > 𝜎𝑐 , or
𝜏 > 𝜏𝑐 . The directions of the normal force 𝐅𝑛, the shear
force 𝐅𝑠, the bend torque 𝐓𝑏 and the twist torque 𝐓𝑡 are
shown in Fig. 4, and their calculation will be explained later.

Figure 4: Forces and torques are decomposed into direc-
tions along the bond and directions vertical to the bond.

The resultant force and torque are obtained by calculat-
ing the negative gradient of the Cosserat potentials by

𝐅𝑆𝐸
𝑖 = −∇𝐱𝑖𝐸

𝑆𝐸
𝑖𝑗 = −𝑙(

𝜕𝚪𝑖𝑗

𝜕𝐱𝑖
)𝑇𝐶Γ𝚪𝑖𝑗 , (26)

�̃�𝐵𝑇
𝑖 = −∇𝐪𝑖𝐸

𝐵𝑇
𝑖𝑗 = −𝑙(

𝜕𝛀𝑖𝑗

𝜕𝐪𝑖
)𝑇𝐶Ω𝛀𝑖𝑗 . (27)

The derivatives of the strain measure Γ and the Darboux vec-
tor Ω are given in the supplemental document. According to
[47], torque parameter �̃�𝑖 ∈ ℝ4 could be transformed into
Euclidean torque 𝐓𝑖 ∈ ℝ3:

[

0
𝐓𝑖

]

= 1
2
�̃�𝑖�̄�𝑖, (28)

where we use (̃⋅) to represent the 4d vector dual to the 3d
vector.

Now, let us see how to decompose force and torque in
Eqns. (26, 27). Since Γ𝑖𝑗 and Ω𝑖𝑗 are all in material frame,
which means it already contains the normal and tangential

decomposition in world frame. The third components of
Γ𝑖𝑗 and Ω𝑖𝑗 are along the bond, and the remaining two
components are vertical to the bond. When we calculate the
force or torque in a certain direction, we could simply set
the stiffness in the vertical direction of 𝐶Γ or 𝐶Ω to 0, and
get 𝐶Γ,𝑛, 𝐶Γ,𝑠, 𝐶Ω,𝑛, 𝐶Ω,𝑠 as follow:
[

0
0

𝑆

]

,

[

𝐴
𝐴

0

]

,

[

0
0

𝐽 𝑟

]

,

[

𝐼𝑟
𝐼𝑟

0

]

Substituting these stiffness matrices into Eqns. (26, 27),
the following force and torque decompositions are obtained
directly:

𝐅𝑛
𝑖 = −𝐶Γ,𝑛𝚪𝑖𝑗 ,𝐅𝑠

𝑖 = −𝑙(
𝜕𝚪𝑖𝑗

𝜕𝐱𝑖
)𝑇𝐶Γ,𝑠𝚪𝑖𝑗 ,

�̃�𝑡
𝑖 = −𝑙(

𝜕𝛀𝑖𝑗

𝜕𝐪𝑖
)𝑇𝐶Ω,𝑡𝛀𝑖𝑗 , �̃�𝑏

𝑖 = −𝑙(
𝜕𝛀𝑖𝑗

𝜕𝐪𝑖
)𝑇𝐶Ω,𝑏𝛀𝑖𝑗 .

(29)

𝐅𝑛 is calculated in the material frame ( 𝑙
𝜕𝚪𝑖𝑗

𝜕𝐱𝑖

𝑇

could be

regarded as a transformation from the material frame to
the world frame). Because 𝐹 𝑛 in Eqn. (24) we need is a
signed scalar, the third component of 𝐅𝑛 in the material
frame can be conveniently taken as 𝐹𝑛. We further convert
�̃�𝑖 to 3D torque 𝐓𝑖 by Eqn. (28). Since the torques on
particle 𝑖 and 𝑗 are not equal, we use the maximum torque
|𝐓𝑏

| = 𝑚𝑎𝑥(|𝐓𝑏
𝑖 |, |𝐓

𝑏
𝑗 |), |𝐓

𝑡
| = 𝑚𝑎𝑥(|𝐓𝑡

𝑖|, |𝐓
𝑡
𝑗|) as in [8] to

determine whether the bond is broken.
We note that although we adopt [43] for the fracture

model by default, our rod-bond framework also has the
flexibility to allow for other kinds of fracture models. An
example is given in Fig. 13, where we use the fracture model
in [2] to simulate the Hertzian cone in glass.

3.5. Contact Model
In BDEM, discrete elements are quasi-rigid spheres

without deformation, and they can overlap slightly when in
contact. The BDEM solver detects these overlaps between
non-bonded particles, and once an overlap is found, it
applies a pair of equal and opposite repulsive forces to
the two overlapping particles to resolve the contact. As a
penalty method, BDEM classically uses penalty forces in-
clude Hookean contact force[30, 15], or the Hertzian contact
force[8]. We use 𝐝𝑖𝑗 = ‖

‖

‖

𝐱𝑖 − 𝐱𝑗
‖

‖

‖

to represent the distance

between two particles, and use 𝐝𝑖𝑗 = 𝐫𝑖 + 𝐫𝑗 to represent
the threshold at which two particles just do not penetrate
each other. The Hookean contact force is in the following
form, 𝐅𝑐

𝑖𝑗 = 𝑘𝑐(𝐝𝑖𝑗 − 𝐝𝑖𝑗)𝐧, where 𝐧 =
(

𝐱𝑖 − 𝐱𝑗
)

∕𝐝𝑖𝑗 . The

corresponding contact potential follows 𝐸𝑐
𝑖𝑗 ∼ 𝑘𝑐(𝐝𝑖𝑗−𝐝𝑖𝑗)2.

The Hertzian contact force is 𝐅𝑐
𝑖𝑗 = 𝑘𝑐(𝐝𝑖𝑗 − 𝐝𝑖𝑗)1.5𝐧.The

corresponding contact potential follows 𝐸𝑐
𝑖𝑗 ∼ 𝑘𝑐(𝐝𝑖𝑗 −

𝐝𝑖𝑗)2.5.
In implementation, these well-proven penalty forces

are both integrated under explicit methods. When we use
implicit schemes for integration to simulate fractures in
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large time step, the results of these forces are not sat-
isfactory. Specifically, if the bond is compressed, or the
particles are close together when the bond is initialized,
the overlap between the two bonded particles will be large
before fracture. Then when 𝑘𝑐 is large, the particles will
suddenly be subjected to a huge penalty force after fracture.
The momentum of this particle is so high that its other
bonds are broken, leading to catastrophic results in fracture
simulation[56]. When 𝑘𝑐 is small, tunneling artifacts may
occur between two colliding objects.

Here, We use smooth log-barrier function as penalty
potential[28]. The contact potential follows:

𝐸𝑐
𝑖𝑗 =

𝑘𝑐𝜋𝑟
2

(𝐝𝑖𝑗 − 𝐝𝑖𝑗)2 ln
(

𝐝𝑖𝑗
𝐝𝑖𝑗

)

, (30)

where 𝜋𝑟
2 is a coefficient from [30]. Compared with the

Hookean and Hertzian contact potential, Eqn. (30) can
give a smaller force when the two particles overlap little,
and alleviate the problem of crushing caused by excessive
contact force when the fracture occurs. At the same time, as
the overlap between the two particles increases, the penalty
force can grow to infinity to avoid penetration.

4. Implementation
4.1. Initial Configuration

There are many ways to initialize particles in solid
packing in BDEM. Using hexagonal closest packing with
the same element size in mesh is the most efficient way. This
method can ensure that the particles are just in contact with
each other at the initial moment without penetration, and has
a good scaling consistency[30]. We use this packing method
in Figs. 5,7,9. However, this packing produces unexpected
anisotropy[1], requires random bond strength to produce
more natural cracks, and can not represent smooth surfaces.
In other figures, random close packing, which is more com-
mon in engineering[43, 1], is used. Random close packing
can be generated by dynamically simulating contact forces
between particles and between particles and boundaries.
Both DEM(Figs. 10,12,13) and SPH(Fig. 11) simulations
can generate packing with small particle overlaps , which is
sufficient to handle fracture simulations in BDEM.

During the initialization procedure of bonds, each parti-
cle is connected to other particles within the range of 𝛿0𝑟
through the generated bond. The length 𝑙 of the bond is the 
distance between the two particles at this time. We set
𝛿0 = 1.1 for all cases. We further calculate 𝐪0𝑖𝑗 through Eqn.
(20) and store it on the bond.

4.2. Simulation Workflow
Gravity, attachment and boundary are also handled as

energies. The first derivative of the gravitational potential
is gravity, and the second derivative is 0. The attachment
constraint is a zero rest-length spring added between the
current position and the target position, which could be fixed
or moved under our control. The boundary constraint is

also a zero rest length spring, but its orientation is always 
perpendicular to the normal of the boundary. For simplicity,
its stiffness is set to be as large as the contact stiffness 𝑘𝑐 . 
An additional requirement is that the quaternion must be 
unit length. We use the following constraint:

𝐸𝑖
𝐪 = ‖

‖

1
2
𝑘𝑞(‖‖𝐪𝑖     − 1)2, (31)

where we set 𝑘𝑞 = 1 and explicitly normalize 𝐪𝑖 as post-
processing after solving the linear system.

We include all the energies in Eqns. (18,22,30,31), 
attachment, boundary constraint and gravitational potential 
into our total energy function Eqn. (12) which is now 
aware of elastic response, contact, attachment and grivity. 
For simplicity and speed, we approach this optimization 
problem using a linear implicit scheme (one-step Newton 
iteration). We approximate the Hessian of the Cosserat 
energy using the Gauss-Newton method[37], i.e., ignoring 
the terms containing the second derivatives of the strain 
Γ and the darboux vector Ω. It can be seen from the last 
two rows of Table 3 that under this approximation, the 
macroscopic elastic response of our implicitly-integrated 
method is basically consistent with that of our explicitly-
integrated method. We give the derivative of the Cosserat 
energy and its approximate Hessian matrix in the supple-
mental document. Preconditioned conjugate gradient(PCG) 
with jacobi preconditioner is used to solve one Gauss-
Newton iteration. Its convergence threshold is set to 2e-5. 
The overall algorithm of RBDEM to simulate fracture is in 
Algorithm 1.

Algorithm 1 Overall Simulation Workflow

1: function SOLVE(𝐱(𝑛)𝑖 ,𝐪(𝑛)𝑖 , 𝐯(𝑛)𝑖 ,𝝎(𝑛)
𝑖 )

2: 𝐱∗𝑖 = 𝐱(𝑛)𝑖 + ℎ𝐯(𝑛)𝑖

3: 𝐪∗𝑖 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐪(𝑛)𝑖 + ℎ
2

[

0
𝝎(𝑛)
𝑖

]

𝐪(𝑛)𝑖 )

4: Compute∇𝐸𝑇 𝑜𝑡𝑎𝑙,∇2𝐸𝑇 𝑜𝑡𝑎𝑙 (Eqn.(12), Sec.4.2)
5: Δ𝐱𝑖,Δ𝐪𝑖 = 𝑃𝐶𝐺𝑆𝑜𝑙𝑣𝑒(∇𝐸𝑇 𝑜𝑡𝑎𝑙,∇2𝐸𝑇 𝑜𝑡𝑎𝑙)
6: 𝐱(𝑛+1)𝑖 = 𝐱∗𝑖 + Δ𝐱𝑖
7: 𝐪(𝑛+1)𝑖 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐪∗𝑖 + Δ𝐪𝑖)
8: 𝜎, 𝜏 = 𝑆𝑡𝑟𝑒𝑠𝑠(𝐱(𝑛+1)𝑖 ,𝐪(𝑛+1)𝑖 ) (Eqn. (24,25))
9: check breakage (Sec 3.4)

10: 𝐯(𝑛+1)𝑖 = 1
ℎ (𝐱

(𝑛+1)
𝑖 − 𝐱(𝑛)𝑖 )

11:

[

0
𝝎(𝑛+1)
𝑖

]

= 2
ℎ (𝐪

(𝑛+1)
𝑖 �̄�(𝑛)𝑖 − 𝐪𝐼 )

12: Return 𝐱(𝑛+1)𝑖 ,𝐪(𝑛+1)𝑖 , 𝐯(𝑛+1)𝑖 ,𝝎(𝑛+1)
𝑖

13: end function

We use GPU parallel computing technology to accel-
erate simulations. Computing interactions and collisions
between particles, as well as PCG when implicitly solving
Eqn.(12), are performed in parallel. A uniform 3D grid is
used to perform spatial neighbourhood particle searches for
both explicit and implicit RBDEM.
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Experiment Δ𝑡 N r 𝜌   𝑘𝑐 𝜎𝑐 𝜏𝑐 s/frame
Spring 5e-3 2.4K 0.001 2000 7e6 2.8e6 1e6 +∞ +∞ 0.50
Cantilever Beam 2e-2 50.6k 0.00125 1000 5e4/5e5 2e4/2e5 1e5 +∞ +∞ 0.93/1.16
Beam Bending 2e-4 28.1k 0.00125 3000 1e8 3.3e7 1e7 1𝑒7 7𝑒6 15.62
Beam Twisting 2e-4 52.5k 0.0025 2600 1e7 3.3e6 1e6 4e6 1.5e6 18.58
Bunny 1e-4 25.8k 0.00125 2700 1e8 4e7 1e7 7.6e5 2e7 21.06
Thin Plate 1e-4 24.2k 0.002 5000 1e9 4e8 5e7 5e6 2e7 17.75
Thick Plate 5e-5 129.5k 0.002 5000 1e8 4e7 5e7 1e6 4e6 14.06
Hertzian Cone 3e-5 62.7k 0.002 5000 1e9 4e7 1e9 - - 11.30

Table 1
Parameters Setting and performance

Experiment Δ𝑡 max Δ𝑡𝑒𝑥𝑝 s/frame𝑒𝑥𝑝 speedup
Spring 5e-3 2e-5 3.76 7.52
Cantilever Beam 2e-2 1e-4/4e-5 3.45/9.41 3.71/8.40
Beam Bending 2e-4 4e-6 30.45 1.95
Bunny 1e-4 4e-6 28.19 1.33
Thin Plate 1e-4 2e-6 58.40 3.29
Thick Plate 1e-4 8e-6 5.90 0.52

Table 2
Performance comparison of our implicit RBDEM with the
explicit BDEM.

4.3. Parameter Discussion
The Timoshenko shear correction factor (𝜅 = 5∕6) in

Eqn. (17) could correct the effective cross section area,
and is used in most of our experiments unless otherwise
mentioned. When this factor is not used (𝜅 = 1), our model
produces an elastic response consistent with the explicit
BDEM, which will be explained in Sec. 5.2.

5. Results
We implement our experiments with CUDA. Our simu-

lations run on a NVIDIA GEFORCE 1080 Ti GPU. Model
parameters and simulation performance are summarized in
Table 1. In the cases where only elastic deformation occurs,
the frame in the video corresponds to about 0.02s of the
simulation. For the cases where fractures occurs, one frame
corresponds to about 0.01s of the simulation since these
cases involve a lot of fast motion. Especially for the cases of
the Hertzian cone(Figs. 12 and 13), because the collision or
crack growth occurs extremely fast, one frame corresponds
to 0.001s of the simulation.

We also provide a performance comparison of our im-
plicit RBDEM with explicit BDEM[30] using the velocity
verlet. We simulate with the largest time step that the
explicit model can tolerate. The time step and seconds
per frame of the simulation are summarized in Table 2.
As shown in Table2, in most cases, Δ𝑡𝑒𝑥𝑝 under explicit
integration is limited to very small by Young’s modulus. The
reason why the implicit version can simulate faster than the
explicit version is that it can simulate stably at larger time
steps. It is worth noting that a large number of collisions
limits the time step of implicit integration, resulting in poor
speedup or slower speed than explicit integration like Thick
Plate in Table 2. This is due to the inability of the linear

implicit scheme to handle high-speed collisions. However,
the implicit system generated by the RBDEM model can
indeed enlarge the time step of the simulation, and obtain
faster results in most scenarios.

5.1. Deformation

Figure 5: Simulating the cantilever beam using implicit
RBDEM(green) and BDEM(purple). Using different Young’s
modulus: 5e4 (top), and 5e5 (bottom). Explicit BDEM will fail
at the same time step, and a time step of table2 size must be
set to be stable.

Fig. 5 shows a cantilever beam sagging under gravity.
We simulate and produce similar visual effects using im-
plicit RBDEM (green) and BDEM (purple), respectively.
Both simulations of 𝐸 = 5𝑒4 (the first row) and 𝐸 = 5𝑒5
(the second row) can be accelerated by implicit RBDEM.
As shown in Table 1 and Table 2, the speedup ratio is larger
when 𝐸 = 5𝑒5, because the maximum time step that the ex-
plicit method can tolerate decreases significantly when the
Young’s modulus is larger, which makes the explicit method
more time-consuming. In this comparison, in order to make
the vibration amplitudes during the sag simulated by the
two models visually similar, we set 𝜅 = 1 in RBDEM and
add a small velocity damping in BDEM because the implicit
method automatically introduces numerical damping.

In Fig. 6, the spring oscillates up and down between
Fig. 6a and Fig. 6b due to the mutual conversion of elastic
potential, kinetic energy and gravitational potential, and
finally stops at a middle position Fig. 6c. This case is
composed entirely of discrete elements which shows that
RBDEM can directly handle the simulation where coupling
of rods (springs) and volumetric objects is included.
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(a) (b) (c)

Figure 6: A spring dynamometer that oscillates up and down
under gravity.

𝑚𝑖𝑐𝑟𝑜 𝜎𝑚𝑖𝑐𝑟𝑜 𝑚𝑎𝑐𝑟𝑜 𝜎𝑚𝑎𝑐𝑟𝑜 Δ𝑡 s/frame
BDEM 1.0e8 1.0𝑒7 1.11𝑒8 1.63𝑒7 4e-6 30.45
Oursexp
(𝜅 = 1) 1.0e8 1.0𝑒7 1.11𝑒8 1.63𝑒7 4e-6 32.10

Oursexp 1.0e8 1.0𝑒7 1.07𝑒8 1.55𝑒7 4e-6 31.95
Oursimp 1.0e8 1.0𝑒7 1.07𝑒8 1.52𝑒7 2e-4 15.62

Table 3
All cases use the same fracture model and contact model
described in Sec.3.4, 3.5. Oursexp mean RBDEM in explicit
integration, while Oursimp mean in implicit integration. The
other microscopic parameter settings are in Table 1.

5.2. Bending and Twisting

Figure 7: Three points bending test. The particle color is vi-
sualized using the tensile stress magnitude in the connected
bonds.

The three points bending test, as shown in the Fig.
7, refers to the test to measure the macroscopic Young’s
modulus and macroscopic flexural strength of a piece of
material. As the cylindrical indenter presses down, we
can measure the corresponding load-displacement diagram.
According to the formula from beam theory in [30], the
macroscopic Young’s modulus 𝑚𝑎𝑐𝑟𝑜 and flexural strength
𝜎𝑚𝑎𝑐𝑟𝑜 of the material can be obtained through the slope of
the load-displacement curve and the maximum load before
fracture, and the calculation results are shown in Table 3.
We use the method of least squares to fit the slopes of the
measured points. In the case of explicit integration without
adding the Timoshenko shear correction factor (𝜅 = 1),
our model can obtain almost the same 𝑚𝑎𝑐𝑟𝑜 and 𝜎𝑚𝑎𝑐𝑟𝑜
compared with BDEM. With the help of the Timoshenko
shear correction factor (𝜅 = 5∕6), the measured macro-
scopic parameters differ from BDEM but are closer to the
corresponding microscopic parameters 𝑚𝑖𝑐𝑟𝑜 and 𝜎𝑚𝑖𝑐𝑟𝑜.
Finally, we use an implicit integration of the RBDEM with a
larger time step, and the comparison shows that our implicit
RBDEM produces consistent results at a faster speed. Note

that we calculate higher 𝜎𝑚𝑎𝑐𝑟𝑜 in the first r ow o f t able 3 
than [30], because our fracture model does not consider
compression, which delays the occurrence of fracture. Fig.

Figure 8: Bending experiments with a pre-set hole or ran-
dom close packing of different discrete element radii.

8 shows bending experiments similar to Fig. 7 with a hole 
or random close packing of different discrete element radii. 

The first r ow o f F ig. 9  s hows a  b eam t hat gradually 
twists to fracture. The second and third rows show the 
results of explicit RBDEM and BDEM simulations at the 
same computation time, respectively. It can be observed that 
the object shapes and stress distributions during the twisting 
process of the three simulators are similar. However, for 
explicit integration, regardless of whether the rod model 
is used or not, the stress distribution on the fragments 
is discontinuous, and many unexpected explosive particles 
are generated. When one bond breaks, the two connected 
particles will lose the elastic forces exerted by the bond and 
gain equal and opposite contact forces.The adjacent bonds 
need to be further deformed to maintain the equilibrium 
state of the two particles, causing the adjacent bonds that are
already close to the threshold (𝜎𝑐 ,𝜏𝑐 ) to break. For implicit 
integration, since it involves a global linear system with 
respect to position, the deformation will be more evenly 
distributed to the surrounding bonds instead of just adjacent 
bonds. The explosive particles are still present when we
reduce 𝑘𝑐 and Δ𝑡 in explicit integration.

5.3. Impacting
Fig. 10 shows the fracture of a thin plate by the impact 

of a ball. We provide a comparison with MPM in the second 
row of Fig. 10 to illustrate that our method can produce 
better visual effects in brittle fracture. NACC model in 
CDMPM[64] is used with the same number of particles. 
We find that it is difficult to produce brittle fracture using 
CDMPM under feasible parameters when the Young’s mod-
ulus is large. We search hard for parameters to raise Young’s 
modulus, and finally set it to 5e3 (significantly lower than 
1e9), which is sufficient to produce fragments similar to 
RBDEM. However, as is shown in Fig. 10, the fracture 
surface simulated by MPM is not sharp, while the fracture 
surface of RBDEM is rigid and clear. Increasing the number 
of sampled particles in MPM does not solve this problem, 
and ultimately may rely on complex reconstruction methods 
such as in [16].

Fig. 11 shows simulation of a breakable bunny sculpture 
impact a rigid wall. The bunny breaks after hitting the wall,
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Figure 9: Both ends of the beam are initially fixed, after which they rotate in opposite directions with a fixed angular velocity
of 2 𝑟𝑎𝑑∕𝑠. Using implicit RBDEM (top), explicit RBDEM (middle) and explicit BDEM (bottom), respectively.

Figure 10: A thin plate produce a brittle fracture effect with implicit RBDEM(top), and MPM(bottom) after being impacted by
the ball. The initial speed of the ball is 5𝑚∕𝑠.

Figure 11: A bunny sculpture breaks after hitting the wall at
a speed of 3m/s.

and the rest of it breaks again after contacting the ground.
Our method can handle fractures in complex geometries.

5.4. Hertzian Cone
Fig. 12 shows the fracture of a thick plate after being hit

by a spherical indenter moving at a constant velocity 10𝑚∕𝑠,

and the bottom of the thick plate is fixed. From the cross
section of the thick plate shown in the first row of Fig. 12, it
can be seen that debris correctly flies out from the impacted
side, while the Hertzian Cone crack develops on the other
side.

The Hertzian cone crack in the first row of Fig. 13(image
taken from [44]) was first observed by Hertz at the end of the
19th century. With the fracture model in [43], it is possible to
simulate cone-shaped cracks in geotechnical materials like
Fig. 12, but Hertzian cone cracks in silica glass can not yet
be simulated. André et al.[2] noted that, with the standard
fracture model in BDEM simulation, the fracture would
occur near the indenter and propagate through the entire ma-
terial thickness in the indentation test, which is unexpected.
In order to simulate the clear Hertzian cone crack under
indenter impact in silica glass, they proposed a new fracture
criterion based on hydrostatic stress. Our robust bond model
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Figure 12: A thick plate is impacted by a spherical inden-
ter, producing complex fragmentation effects with implicit
RBDEM. The cross-sectional view and the full view of the
simulation results are shown in the first and second rows,
respectively.

Figure 13: Photograph of the Hertzian cone crack in real
world(first row) and computer simulation of the Hertzian
cone crack in silica glass(second and third rows). We use
transparent surfaces for better crack visualization (third row).

enables simulation of the expected Hertzian cone crack in
silica glass under this fracture model.

Firstly, this model defines the Cauchy stress on discrete
element 𝑖, which needs to be calculated by traversing all the
bonds connected to the particle,

�̄�𝑖 =
1
4𝑉

∑

𝑗
(𝐱𝑖𝑗 ⊗ 𝐹𝑆𝐸

𝑖 + 𝐹𝑆𝐸
𝑖 ⊗ 𝐱𝑖𝑗), (32)

where 𝐱𝑖𝑗 = 𝐱𝑗 − 𝐱𝑖, ⊗ is the tensor product and V is
the volume of the discrete element. The original formula
in [2] uses force from the cohesive beam bond model
instead of the 𝐹𝑆𝐸

𝑖 derived from the Cosserat potential

in our RBDEM. Brittle fracture occurs when the tensile
hydrostatic stress (volumetric stress) calculated from the
Cauchy stress is large. We calculate the tensile hydrostatic
stress of each particle 𝑖 by the formula 1

3 𝑡𝑟𝑎𝑐𝑒(�̄�𝑖), where
𝑡𝑟𝑎𝑐𝑒(⋅) means to trace the matrix. Once the hydrostatic
stress of the particle reaches a threshold, i.e. 1

3 𝑡𝑟𝑎𝑐𝑒(�̄�𝑖) >
�̄�𝑐 , all bonds connected to the particle are broken. In this
case, we set �̄�𝑐 = 4𝑒6.

The simulation results obtained with this fracture model
is shown in Fig. 13, where a piece of silica glass is cracked
by the impact of a spherical indenter. We can observe the
gradual growth of the apparent cone-shaped crack inside the
transparent glass in the third row of Fig. 13, where we do not
visualize the indenter to fully show the Hertzian cone crack.

6. Conclusion and Future Works
In this work, we propose a new BDEM. Through the

new discretization method of the Cosserat rod, we effi-
ciently integrate the Cosserat rod into BDEM. Since our 
method is based on Cosserat energy, it is able to generate 
a symmetric Hessian matrix. By modifying the fracture 
model and selecting the appropriate contact potential, we 
construct a complete implicit integral system for BDEM. 
We quantitatively show that our method is able to produce 
results consistent with previous work. Since the implicit 
integration allows us to simulate with larger time steps, the 
implicit RBDEM is computationally faster than previous 
work in some scenarios.

The proposed method has some limitations and future 
work. The time step that explicit BDEM can tolerate in-
creases when Young’s modulus gets smaller, so in this 
cases implicit RBDEM may not have a speed advantage 
over explicit BDEM. As we point out in the results, the 
implicit method significantly increase the time step of the 
simulation,but collisions limit the further increase of the 
time step. Since we explicitly integrated the fracture model 
in the implicit simulation, when the time step is too large, 
the propagation of the fracture may be limited, manifested 
as slower propagation. We believe that both problems need 
to be solved by better multi-step implicit iteration involving 
collisions and fractures, which we consider to be future 
work. Furthermore, the fully Hessian(rather than Gauss-
Newton approximation) and constraint-based methods may 
provide us better stability under large time step, and exact 
enforcement of unit quaternion constraints. Since our im-
plicit method is a kind of energy optimization formulation, 
PBD and PD can be used to speed up the solution. Support 
for frictional contact allows fracture simulation in more 
scenarios. Support for plastic deformation, ductile fracture, 
and fluid-soild c oupling w ould a lso b e i nteresting future 
work. We would like to investigate the generalization of our 
method to handle non-uniform and non-spherical discrete 
elements, which is achievable under the theory of our 
implicit method.
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1. Derivation of Energy Function in
Orientation Level
To get an integral in orientation level, we reorganize

the orientation-related part of the Newton-Euler equation as
follows,

𝐪(𝑛+1)𝑖 − 𝐪(𝑛)𝑖 − ℎ
2

[

0
𝝎(𝑛)
𝑖

]

𝐪(𝑛)𝑖 = ℎ2

2

[

0
𝐈−1𝑖 𝐓(𝑛+1)

𝑖

]

𝐪(𝑛)𝑖 (1)

Multiplying both sides of the equation by �̄�(𝑛)𝑖 ,

𝐪(𝑛+1)𝑖 �̄�(𝑛)𝑖 − 𝐮(𝑛)𝑖 = ℎ2

2

[

𝟎
𝐈−1𝑖

] [

𝟎
𝐓(𝑛+1)
𝑖

]

, (2)

where 𝐮(𝑛)𝑖 = 𝐪𝐼 +
ℎ
2

[

0
𝝎(𝑛)
𝑖

]

.

Substituting
[

0
𝐓𝑖

]

= 1
2 �̃�𝑖�̄�𝑖 into Eqn. (2) and multiplying

both sides by 𝐪(𝑛)𝑖 , and moving the moment of inertia to the
left-hand side, we get

�̃�𝑖((𝐪
(𝑛+1)
𝑖 − 𝐮(𝑛)𝑖 )�̄�(𝑛)𝑖 ) = ℎ2

4
�̃�𝑖�̄�𝑖 (3)

for every discrete elements.
Torque parameter �̃�𝑖 is conservative about 𝐸, �̃�𝑖 =

−∇𝐪𝑖𝐸[4]. Multiplying both sides by 𝐪(𝑛)𝑖 , we further have:

(̃𝐈𝑖((𝐪
(𝑛+1)
𝑖 − 𝐮(𝑛)𝑖 )�̄�(𝑛)𝑖 ))𝐪(𝑛)𝑖 = −ℎ2

4
∇𝐪𝑖𝐸. (4)

An optimization formulation can be obtained by trans-
posing the right-hand side of Eqn. (4) to the left and
integrating:

min
𝐪(𝑛+1)𝑖

2
ℎ2

(𝐪(𝑛+1)𝑖 �̄�(𝑛)𝑖 −𝐮(𝑛)𝑖 )̃𝐈𝑖(𝐪
(𝑛+1)
𝑖 �̄�(𝑛)𝑖 −𝐮(𝑛)𝑖 )+𝐸(𝑛+1). (5)

By summing 𝑖, the optimization function can be obtained.

min
𝐪(𝑛+1)

2
ℎ2

∑

𝑖

‖

‖

‖

𝐪(𝑛+1)𝑖 �̄�(𝑛)𝑖 − 𝐮(𝑛)𝑖
‖

‖

‖�̃�𝑖
+ 𝐸(𝑛+1). (6)

2. Gradient and Hessian of the Cosserat
Energy
We should revisit the matrix multiplication form of

quaternion multiplication first.

𝐩𝐪 = 𝑄(𝐩)𝐪 =
[

ℜ(𝐩) −ℑ(𝐩)𝑇
ℑ(𝐩) ℜ(𝐩)𝟏3×3 + [ℑ(𝐩)]×

] [

ℜ(𝐪)
ℑ(𝐪)

]

, (7)
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where the matrix [𝐩]× is used to represent the vector cross
product as a matrix-vector product 𝐩 × 𝐪 = [𝐩]×𝐪. Right
multiplying a quaternion can also be written in the form of
a matrix-vector product:

𝐩𝐪 = �̂�(𝐪)𝐩 =
[

ℜ(𝐪) −ℑ(𝐪)𝑇
ℑ(𝐪) ℜ(𝐪)𝟏3×3 − [ℑ(𝐪)]×

] [

ℜ(𝐩)
ℑ(𝐩)

]

. (8)

According to [2], the derivative of a rotated vector 𝐑(𝐪)𝐩
w.r.t. 𝐪 is

𝜕(𝐑(𝐪)𝐩)
𝜕𝐪

= 2�̂�(𝐩�̄�)3×4, (9)

where (⋅)3×4 means we only take the lower 3 × 4 part of the
matrix.

Next, we give the specific derivatives of the strain
measure and the Darboux vector. Take the derivative of 𝚪𝑖𝑗
with respect to 𝐱𝑖, we get

𝜕𝚪𝑖𝑗

𝜕𝐱𝑖
= −1

𝑙
(𝑅(𝐪𝑖𝑗)𝑅(𝐪0𝑖𝑗))

𝑇 . (10)

Take the derivative of 𝚪𝑖𝑗 w.r.t. 𝐪𝑖, we get

𝜕𝚪𝑖𝑗

𝜕𝐪𝑖
= 1

𝑙𝑅(𝐪
0
𝑖𝑗)

𝑇 �̂�(𝜕𝑠𝐱𝐪𝑖𝑗)3×4𝑑𝑖𝑎𝑔(1,−1,−1,−1)
𝜕𝐪𝑖𝑗
𝜕𝐪𝑚

,

(11)

where

𝜕𝐪𝑖𝑗
𝜕𝐪𝑚

=
𝟏 − 𝐪𝑖𝑗𝐪𝑇𝑖𝑗
‖

‖

𝐪𝑚‖‖
. (12)

The derivative of 𝛀 w.r.t. 𝐪𝑖 is

𝜕𝛀𝑖𝑗

𝜕𝐪𝑖
= − 2

𝑙 (
1
2 �̂�(𝐪𝑗 − 𝐪𝑖)𝑑𝑖𝑎𝑔(1,−1,−1,−1)

𝜕𝐪𝑖𝑗
𝜕𝐪𝑚

−𝑄(�̄�𝑖𝑗))

(13)

The force derived from 𝐸𝑆𝐸 and the torque derived from
𝐸𝐵𝑇 have been calculated in Eqns. (Main-26, Main-27), the
force derived from 𝐸𝑆𝐸 can be calculated by the following
equation

�̃�𝑆𝐸
𝑖 = −∇𝐪𝑖𝐸

𝑆𝐸
𝑖𝑗 = −(

𝜕𝐸𝑆𝐸
𝑖𝑗

𝜕𝚪𝑖𝑗

𝜕𝚪𝑖𝑗

𝜕𝐪𝑖
)𝑇 = −𝑙(

𝜕𝚪𝑖𝑗

𝜕𝐪𝑖
)𝑇𝐶Γ𝚪𝑖𝑗 .

(14)

It is very difficult to further derive these derivatives with
respect to quaternions using the quaternion representation.
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Rod-Bonded Discrete Element Method

For simplicity, we use the Gauss-Newton method, using an
approximate Hessian matrix to ignore the terms containing
the second derivative of 𝚪 and 𝛀. For example,

𝐇𝑆𝐸
𝐱𝑖,𝐱𝑖

≈ 𝑙(
𝜕𝚪𝑖𝑗

𝜕𝐱𝑖
)𝑇𝐶Γ 𝜕𝚪𝑖𝑗

𝜕𝐱𝑖
,

𝐇𝑆𝐸
𝐪𝑖,𝐱𝑖

≈ 𝑙(
𝜕𝚪𝑖𝑗

𝜕𝐪𝑖
)𝑇𝐶Γ 𝜕𝚪𝑖𝑗

𝜕𝐱𝑖
.

(15)

The other blocks of the Hessian matrix are calculated
similarly.

3. Asymmetry Introduced by Torques in [3]
In this section, we first construct a linear system in

angular velocity level following Baraff et al.[1]. We take the
derivative of the shear torque in [3] to show that the resulting
coefficient matrix of the linear system is asymmetric. In a
similar way, we explain that the twist torque in [3] is not
integrable because its torque derivative matrix in orientation
level is asymmetric.

For any discrete element 𝑖, the implicit Euler scheme for
updating orientation is

⎧

⎪

⎨

⎪

⎩

Δ𝐪𝑖 =
1
2ℎ

[

0
𝝎(𝑛+1)
𝑖

]

𝐪𝑛𝑖
Δ𝝎𝑖 = ℎ𝐈−1𝑖 𝐓(𝑛+1)

𝑖 .
(16)

Here we consider a simplified case where the torque 𝐓𝑖
depends only on orientation, which is sufficient to show
that the coefficient matrix of the angular velocity part in the
linear system is asymmetric. Applying a first-order Taylor
series expansion to 𝑇𝑖

Δ𝝎𝑖 = ℎ𝐈−1𝑖 (𝐓(𝑛)
𝑖 +

∑

𝑘

𝜕𝐓𝑖
𝜕𝐪𝑘

Δ𝐪𝑘). (17)

Eliminating Δ𝑞 from the above equation, using matrix mul-
tiplication in Eqn. (8) instead of quaternion multiplication,
we obtain

Δ𝝎𝑖 = ℎ𝐈−1𝑖 (𝑇 (𝑛)
𝑖 + ℎ

2
∑

𝑘

𝜕𝑇𝑖
𝜕𝐪𝑘

�̂�(𝐪𝑘)
[

0
𝝎(𝑛+1)
𝑘

]

). (18)

After regrouping, each particle has the following equation

(𝐈𝑖 −
ℎ2

2
𝜕𝑇𝑖
𝜕𝐪𝑖

�̂�(𝐪𝑖)
[

𝟎
𝟏

]

)Δ𝝎𝑖 −
ℎ2

2
∑

𝑘≠𝑖

𝜕𝑇𝑖
𝜕𝐪𝑘

�̂�(𝐪𝑘)
[

𝟎
𝟏

]

Δ𝝎𝑘

= ℎ(𝑇 (𝑛)
𝑖 + ℎ

2
∑

𝑘

𝜕𝑇𝑖
𝜕𝐪𝑘

�̂�(𝐪𝑘)
[

𝟎
𝟏

]

𝝎𝑘), 𝑖 = 1, ..., 𝑚,

(19)

, forming a linear system.
[

𝟎
𝟏

]

is a 4 × 3 matrix, and its

upper and lower parts are respectively a 3×3 identity matrix

and a 1 × 3 zero vector. Defining 𝐾𝑖𝑗 = 𝜕𝑇𝑖
𝜕𝐪𝑗

�̂�(𝐪𝑗)
[

𝟎
𝟏

]

and

𝐾𝑗𝑖 = 𝜕𝑇𝑗
𝜕𝐪𝑖

�̂�(𝐪𝑖)
[

𝟎
𝟏

]

, it is easy to see that 𝐾𝑖𝑗 and 𝐾𝑗𝑖

are 3 × 3 block matrices in the symmetrical position of the
coefficient matrix(omit ℎ2

2 ).
In [3], the shear torque of the bond are obtained by

calculating the rotation angle between the shear direction
and the normal direction. The shear direction 𝐝𝑠 is defined
as

[

0
𝐝𝑠

]

= 1
2
(𝐪𝑖

[

0
𝐝0

]

�̄�𝑖 + 𝐪𝑗
[

0
𝐝0

]

�̄�𝑗). (20)

where 𝐝0 is the initial bond direction. The shear torque
applied to particle 𝑖 is

𝐌𝑠
𝑖 =

1
2
𝑙𝑘𝑠(𝐧 ×

𝐝𝑠
‖

‖

𝐝𝑠‖‖
), (21)

where 𝐧 = (𝐱𝑖 − 𝐱𝑗)∕
‖

‖

‖

𝐱𝑖 − 𝐱𝑗
‖

‖

‖

. The torque with respect to
the opposite particle 𝑗 is 𝐌𝑠

𝑗 = 𝐌𝑠
𝑖 .

Now we can substitute 𝐌𝑠 into the block matrices 𝐾𝑖𝑗
and 𝐾𝑗𝑖 from the coefficient matrix in Eqn. (19)

𝐾𝑖𝑗 =
𝜕𝐌𝑠

𝑖
𝜕𝐝𝑠

𝜕𝐝𝑠
𝜕𝐪𝑗

�̂�(𝐪𝑗)
[

𝟎
𝟏

]

,

𝐾𝑗𝑖 =
𝜕𝐌𝑠

𝑖
𝜕𝐝𝑠

𝜕𝐝𝑠
𝜕𝐪𝑖

�̂�(𝐪𝑖)
[

𝟎
𝟏

]

.
(22)

It can be seen that the front part of 𝐾𝑖𝑗 and 𝐾𝑗𝑖 are both

2 𝜕𝐌𝑠
𝑖

𝜕𝐝𝑠
, while the back part is only related to 𝐪𝑖 and 𝐪𝑗 re-

spectively. 𝐪𝑖 and 𝐪𝑗 are completely independent variables,
so for any 𝐪𝑖, there is a 𝐪𝑗 such that 𝐾𝑖𝑗 ≠ 𝐾𝑇

𝑗𝑖 , i.e, the
coefficient matrix is asymmetric.

For implicit integration in orientation level, we first
convert the torque into the torque parameter according
to Eqn. (Main-28), because the torque parameter can be
considered as the first derivative of energy with respect to
the quaternion. We further take derivatives of the obtained
torque parameters, and find that its torque derivative matrix
is asymmetric.

The torque parameter applied to the discrete element 𝑖, 𝑗
has the following forms respectively,

2�̂�(𝐪𝑖)
[

0
𝐓𝑖

]

, 2�̂�(𝐪𝑗)
[

0
𝐓𝑗

]

. (23)

In [3], the twist torque has the following calculation form,

𝐌𝑡
𝑖 = 𝑘𝑡(𝜃𝐚 ⋅ 𝐧)𝐧, (24)

where 𝐚 = ℑ(𝐪𝑡)
|ℑ(𝐪𝑡)|

, 𝜃 = 2 arccosℜ
(

𝐪𝑡
)

, and 𝐪𝑡 = 𝐪𝑗 �̄�𝑖.
And the twist torque with respect to the opposite particle 𝑗
is 𝐌𝑡

𝑗 = −𝐌𝑡
𝑗 .

Here, if we use 𝐿𝑖𝑗 , 𝐿𝑗𝑖 to represent the derivative of
torque paramters in Eqn. (23), we have

𝐿𝑖𝑗 = 2�̂�(𝐪𝑖)
[

0
𝐼

] 𝜕𝐌𝑡
𝑖

𝜕𝐪𝑡
�̂�(�̄�𝑖)

𝐿𝑗𝑖 = −2�̂�(𝐪𝑗)
[

0
𝐼

] 𝜕𝐌𝑡
𝑖

𝜕𝐪𝑡
𝑄(𝑞𝑗)𝑑𝑖𝑎𝑔(1,−1,−1,−1).

(25)
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The asymmetry of the matrix can be found like Eqn. (22),
which means that the torque in [3] is not integrable in
orientation level.
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