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A B S T R A C T
This paper addresses the problem of animating a person in a static image. The core task is to infer
future poses for the person. Existing approaches predict future poses in 2D space, suffering from
entanglements of pose action and pose shape. We propose a method that generates pose actions in
3D space while inheriting pose shape in 2D space. By this separated generation of pose action and
shape, our method is free of the above entanglements. Specifically, our method first lifts the 2D pose
of person into the 3D space. Then we propose a 3D action synthesis network that generates a sequence
of 3D skeletons beginning with the lifted pose. Finally, we transfer the 3D skeletons to a set of 2D
poses that inherit actions from the 3D skeletons while holding the same shape as the given 2D pose.
Experiments on several datasets validate the effectiveness of our method.

1. Introduction
The Computer Graphics community is the one among

others that has devoted lots of effort to animate single
images. Representative works include motion textures [19],
Cinemagraphs [69], Cliplets[22]. The object been animated
varies from passive elements responding to natural forces [11]
to a group of animals [56], from human faces [14; 61] to
cartoon characters [53], etc. In this paper, we attempt to
make a walk person (e.g., a pedestrian) in a static image
move again, which is useful in many image/video processing
applications [55; 38; 32; 64; 25].

To make a static person walk, the major challenge comes
from the extremely large possible future motion and appear-
ance combinations of the pedestrian. Nowadays, with deep
neural networks and leveraging large datasets, many works
in vision [50; 47; 26; 66; 52] train a model that can directly
maps an image to video. In order to reduce complexity, the
most successful approaches [50; 47; 66] decompose motion
from appearance and predict motion at first, then synthesize
future frames guided by the corresponding motion vectors.
This process is usually deterministic [47; 66], yet can be-
come stochastic [49; 50; 13] by utilizing generative model
such as GAN or VAE. In this paper, we follow the overall
pipeline of these approaches, i.e., predicting human motion
at first, and then use an existing pose-guided image synthesis
approach to generate future frames. However, the existing
approaches predict poses in the 2D space, which are subject
to the entanglement of pose action and pose shape. By
“action”, we mean the movement type that a pose take, such
as jump, running, etc., while by “shape” we mean the length
of arms, the height of pose, etc. Due to the entanglement
of action and shape, and also the camera perspectives and
occlusions inherently baked in the 2D frames, existing ap-
proaches are usually required to be trained on large video
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datasets. The trained model are also not general enough to
handle persons not seen during training.

In this paper, we propose a pose prediction method that
separates the prediction of action and shape. Our model is
only required to be trained on 3D MoCap datasets, and is
general enough to process images from different domains.
The core contribution of our method is that we synthesize
actions in the 3D space, and transfer the actions to 2D poses
while making the shape of the generated 2D poses similar to
the shape of the 2D pose of the input person. Our key idea is
to utilize the abundant of 3D MoCap data that fully captures
the moving characteristics of human, with which we can
synthesize high-fidelity human actions. By contrast, learning
actions on 2D video data is relatively more challenging and
ambiguous.

To fulfill the above objectives, we propose a method that
is consisted of three steps. Firstly, we lift the 2D pose of the
person to be re-animated to a 3D skeleton. Then in the 3D
space, we propose a method to synthesize a sequence of 3D
skeletons beginning with the lifted skeleton. Finally, we pro-
pose a network to generate the target future 2D poses which
inherit the actions of the 3D skeletons and at the same time
hold the shape of the pose of the input person. We stress that
for the first step we just need to guarantee that the lifted 3D
skeleton has similar action as the 2D pose. Therefore, instead
of the cumbersome deep learning-based lifting approaches
such as [3; 70; 37], we propose a simple yet effective virtual
3D skeleton surrounding projection method together with
several pose similarity metrics, by which we directly retrieve
the most similar 3D skeleton in the MoCap dataset to the
given 2D pose. For the second step, we introduce user
intervention into the action synthesis process, allowing the
user to control the path of the synthesized actions. As for
the third step, we propose a LSTM-based transfer network,
trained with action transfer loss and temporal smoothness
loss, with no need of ground-truth 2D poses.
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Figure 1: Overview of the proposed framework. Given an input image 𝐼0, the pose 𝑃0 of it is firstly extracted. We retrieve the
most similar pose 𝑃 ′

0 of 𝑃0 from the projected 2D pose dataset from 3D MoCap dataset by virtual surrounding projection. 𝑃 ′

0
corresponds to skeleton 𝐴0 in the 3D MoCap dataset and the camera projection matrix 𝐶0 from 𝐴0 to 𝑃 ′

0 . With 𝐴0 and a
user-specified trajectory 𝑇 , a skeleton sequence �̂�0, �̂�1,⋯ , �̂�𝑀−1 is synthesized by the proposed 3D action synthesis network.
The generated 3D skeletons are then projected to a sequence of 2D poses 𝑃0, 𝑃1,⋯ , 𝑃𝑀−1 by the camera 𝐶0. Then, the input
pose 𝑃0 and poses 𝑃1,⋯ , 𝑃𝑀−1 are refined to obtain another sequence of poses 𝑃0, 𝑃1,⋯ , 𝑃𝑀−1 by the action transfer and shape
preserving network. Finally, with 𝑃1,⋯ , 𝑃𝑀−1 and the input image 𝐼0, we synthesize the future frames by pose-guided image
synthesis network [71].

In total, our method is simple to implement, easy to train,
and effective to predict future poses. The contributions of
this paper include:

• We propose a pose prediction approach, which sep-
arates the prediction of action from the shape. The
prediction of the action is achieved in the 3D space,
while the shape is inherited from the given 2D pose.

• We propose a 3D action synthesis network incorpo-
rating user intervention and a LSTM-based action
transfer network trained on the synthesized 3D actions
and the 2D pose of the given person.

• Since only trained on 3D MoCap datasets, our method
is general to process different domains of persons,
as the actions of the person is generated in the 3D
space (thus only requiring 3D MoCap data as training
data) and the shape of the person is already given in
the input image. We test our method on the datasets
of Market-1501 [67], DeepFashion [29], and Hu-
man3.6M [21].

2. Related Work
Animating objects in a still image is a long-standing

problem in Computer Graphics. Lots of attempts have been
made to handle this task. Some works animate fluid ele-
ments in an image such as water, cloud, etc. For example,

Chuang et al. [7] divide image into layers and synthesize
stochastic motion textures to drive layers containing passive
elements responding to natural forces to animate. Holynski
et al. [19] propose an image-to-image translation network
that encodes motion priors of natural scene videos at training
stage while at test time generating Eulerian motion fields
that animate image recursively. Cinemagraph [2; 44] and
cliplets [22] create a still image with some portion of it
showing dynamic motion provided by an additional video.
Recently, Zhou et al. [69] propose a method that can generate
cinemagraph sequences from single still images by utilizing
deep reinforcement learning. In [1], a method is proposed to
animate a still portrait driven by an extra human face video.
Techniques of image registration, warping and hallucination
are used to achieve realistic animation, relying on some user
interactions. Geng et al. [14] also register and warp the target
face image to the face in a video, but use conditional Genera-
tive Neural Networks (GNNs) [15] to synthesize appearance
details including creases and wrinkles for the warped face.
In [61], the object to be warped is the pose of face, while the
face that conforms to a new pose is totally synthesized by
GNNs. More related to ours are character animation from 2D
pictures [20; 53]. Hornung et al. [20] animate 2D characters
with the help of 3D MoCap data. They find the most similar
3D skeleton for the 2D character and use the projections of
the skeleton sequence into the image place to warp the 2D
mesh of the character. Weng et al. [53] construct a SMPL
model [30] that tightly fitted with the silhouette of the target
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2D character, bringing the character to stand up from image.
There are many other single-image animation applications,
such as generating time-lapse video [68], animating groups
of animals [56] and manga images [4], etc.

Future frame prediction has become possible with the
advent of deep neural networks since they can learn complex
mapping between input and output space by training on
massive datasets. Works of [35; 42; 48] directly predict
pixels, learning to extrapolate multiple past frames into the
future. While they work well for simple images such as those
from MINIST, they tend to produce blurry futures when
applied to more complex datasets. Castrejon et al. [6] ascribe
this to underfitting and propose more sophisticated hierar-
chical VRNN models with higher expressiveness capacity.
Kwon et al. [23] predict both future and past frames and use
retrospective cycle GAN to enforce the consistency between
the bi-directional predictions. Apart from these efforts, many
other researchers have realized that the blurriness is caused
by the great uncertainty about how each pixel will evolve
in the future. Most of recent works thus employ high-level
structure to guide the prediction process [60; 57; 46; 45; 26;
41; 47; 58; 50; 66]. For example, although Ye et al. [60]
still predict pixels, they assume a scene is composed of
independent entities and implicitly predict future positions
for them. Instead of pixels, works of [46; 57] model the
difference between adjacent images. In MoCoGAN [45],
motion is explicitly modeled in a separate branch other
than appearance as a cue for future frame synthesis. Li et
al. [26] formulate multi-frame prediction task as a flow pre-
diction stage followed by flow-to-frame synthesis. Siarohin
et al. [41] extract keypoints from images and compute affine
transformations between them as guidance to transfer the
motion of a driven video to an image. For human video
prediction, lots of approaches [47; 58; 50; 66] predict future
human poses at first, then synthesize frames according to
these poses. We follow this line of research, but unlike they
predict future poses by training models on sequential data,
we synthesize actions in the 3D space with the help of a
global trajectory and then transfer these actions to a human
pose.

Human Pose Prediction outputs future poses after ob-
serving a sequence of past poses. Existing approaches can be
roughly classified into three categories: CNN-based meth-
ods, RNN-based methods, and GCN-based methods [59; 9;
31; 43; 51; 10]. CNN-based methods [59; 28] treat input
poses data as a two-dimensional matrix, then spatiotemporal
convolutional filters can be applied to the pose data like
what has done for an image. RNN-based methods [34]
have advantages in dealing with time-related tasks, but they
usually suffer from discontinuity and error accumulation
problems. One of the above mentioned pose-guided video
prediction method [58] uses CNN for future pose prediction,
while others [50; 66] are based on RNN [12]. Recently,
works of [33; 9; 31] demonstrate that Graph Convolution
Network (GCN) is very suitable for pose prediction, as it can
flexibly learn relations between any pair of human joints. In

this paper, we compare our method with the pose prediction
method of [31].

3. Methodology
Fig. 1 shows the overview of the proposed method.

Given an image containing a walk person, we extract 2D
pose 𝑃0 of it by pose estimation approach [5]. Other pose
estimation methods [65; 62; 40] can also be used here.
Given the 2D pose, we use a pose retrieval scheme (i.e.,
virtual surrounding projection) to obtain the most similar 3D
skeleton in MoCap dataset under the projection of a camera.
We then propose a 3D action synthesis network to generate a
sequence of 3D skeletons, given the retrieved skeleton and a
user-provided trajectory. Next, we propose an action transfer
and shape preserving network that transfers the 3D actions
to a set of 2D poses while making the 2D poses have the
same shape as the input pose. Finally, we adopt the pose-
guided image synthesis method by [71] for the animated
frame generation.

In the following, we describe each component of our
framework in detail.
3.1. 2D Pose Lifting to 3D Skeleton

We need to find the most similar 3D skeleton 𝐴0 in the
MoCap dataset for 𝑃0 and the camera projection matrix 𝐶0that best projects 𝐴0 to 𝑃0. The work of [20] has proposed
a camera and skeleton determination method between 2D
poses and 3D skeletons. However, their method is based on
model fitting and optimization which is time-consuming for
large-scale dataset. Training a network that maps a 2D pose
to 3D skeleton is also cumbersome [3; 70; 37]. Since we
just want to find the skeleton that has similar actions as the
2D pose, we solve this problem by proposing the following
virtual surrounding projection scheme together with several
pose similarity metrics.

Virtual Surrounding Projection. We collect walk skele-
ton sequences of CMU MoCap dataset [8]. In order to find
𝐴0 in the MoCap data that is most similar to 𝑃0, our basic
idea is to project all the 3D skeletons to 2D space from
sufficiently different viewpoints, and then find the most
similar pose 𝑃 ′

0 in the 2D dataset obtained by projection
through pose similarity metrics. With 𝑃 ′

0 , we can obtain 𝐴0

correspondingly and the projection matrix𝐶0 from𝐴0 to 𝑃 ′

0 .
We propose a virtual surrounding projection scheme

described as follows. For each skeleton in the CMU MoCap
dataset [8], we move its root joint to the origin (0, 0, 0). Then,
as shown in Fig. 2, we evenly place a set of cameras (20 in our
setting) around the skeleton on the X-Z plane. The cameras
are used to project the skeleton to a set of 2d poses. This
group of cameras forms a circle, and every one is oriented
towards the 3D skeleton. Let 𝑟 be the radius of the circle, 𝛼 be
the rotation angle of a camera, 𝑓 be the focal length of these
cameras,𝑤 and ℎ be the width and height of captured image,
and 𝑑𝑥 and 𝑑𝑦 be the scaling factors with respect to the image
resolution. The rotation matrix 𝑅, translation matrix 𝑇 and
the intrinsic calibration matrix 𝐼 of a camera are represented
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𝑟

Figure 2: Virtual surrounding projection a 3D skeleton to 2D
poses.

(a) (b) (c)

Figure 3: (a) Representative angles in a pose. (b) Pairs of key
joints between which relative distances are computed. (c) Key
joints whose absolute positions are used.
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where (𝑢0, 𝑣0) is the principal point at the center of image,
which means 𝑢0 = 𝑤∕2 and 𝑣0 = ℎ∕2. The projection matrix
is defined as:

𝐶 = 𝐼
[

𝑅 𝑇
⃖⃗0 1

]

(3)

In this way, we obtain a set of projections of a 3D
skeleton by a discrete group of virtual cameras. We have
tested moving the camera along the 𝑌 axis or shifting it
towards or away from the skeleton, but found the current
projection scheme is the most efficient while at the same time
sufficiently simulating the full projection space.

2D Pose Similarity Metrics. After obtaining all the 2D
poses projected from 3D skeletons, we need to find the one

among them that is the most similar to 𝑃0. Note that 𝑃0 detected by OpenPose [5] has 14 key points (see Fig. 3),
while the 3D MoCap data involves 21 key points (see Fig. 2). 
To retrieve the most similar pose, at the first glance, we need 
to convert the 3D MoCap data to the format of OpenPose, 
making the 3D pose have 14 key points too. But in practice, 
we do not retarget the 3D MoCap data to make a 3D pose 
have the same configuration as the OpenPose 2D skeleton. 
Instead, we directly compare a 14-joint 2D pose with a 21-
joint projected pose between the corresponding points of 
the two kinds of poses. For example, we identify which two 
points in the 14 key points indicate an upper arm and which 
two points in the 21 key points represent the same arm. Then, 
we can calculate the similarity between the corresponding 
joints using the following method.

We design similarity metrics between 2D poses from 
three aspects: difference i n r epresentative a ngles o f pose, 
difference in relative positions between key joints of pose, 
and difference i n a bsolute p ositions o f key j oints o f pose, 
as shown in Fig. 3. The difference i n a ngles b etween two 
2D poses consists of 3 kinds of angles: bending angles of 
legs, bending angles of arms, and angles between waist and 
legs as shown in Fig. 3 (a). Bending angles of legs and 
arms can indicate the state of walking, but the pedestrian 
may step on different l egs given t he same set of angles of 
limbs. Therefore, we use the angles between waist and legs 
for disambiguation. The difference in angles between two 2D 
poses is:

𝐷𝐴𝑛𝑔𝑙𝑒(𝑃 , 𝑃 ) =
𝐾
∑

𝑘=1

‖

‖

‖

𝜃𝑘 − �̂�𝑘
‖

‖

‖

2 (4)

where 𝑃 and 𝑃 are two 2D poses, 𝜃𝑘 denotes the angle de-
fined above which is calculated by the vector inner product,
and 𝐾 = 6.

The difference in relative positions between 2D poses is
defined over distances between joints of shoulders, knees,
and feet of pose, which can represent macroscopic features
such as the orientation of 2D poses. The three joint pairs for
computing relative positions are indicated by the arrows in
Fig. 3 (b). We compute the following loss over them:

𝐷𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒(𝑃 , 𝑃 ) =
𝑀
∑

𝑚=1

‖

‖

‖

𝑅𝑚 − �̂�𝑚
‖

‖

‖

2 (5)

where 𝑅𝑚 denotes the distance between a pair of joints,
‖𝑅𝑚 − �̂�𝑚‖ computes the difference of relative distances,
and 𝑀 = 3.

The difference in absolute locations of key joints be-
tween two 2D poses is used as a complement. The key joints
used are shown in Fig. 3 (c), including hands, knees and
ankles. This difference is defined as:

𝐷𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑃 , 𝑃 ) =
𝐽
∑

𝑗=1

‖

‖

‖

𝑝𝑗 − �̂�𝑗
‖

‖

‖

2 (6)

where 𝑝𝑗 denotes a key joint, and 𝐽 denotes the total number
of key joints used which is 6.
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With the above three differences defined, the similarity
between two 2D poses is:

𝑆(𝑃 , 𝑃 ) = 𝐷𝐴𝑛𝑔𝑙𝑒(𝑃 , 𝑃 ) +𝐷𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒(𝑃 , 𝑃 ) +𝐷𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑃 , 𝑃 ) (7)
With the 2D pose similarity metric, we search the whole

2D projected pose dataset for the pose 𝑃0
′ which minimizes 

the similarity defined in Eq. 7. The searching process is
accelerated by KD-Tree technique. Accordingly, we can
obtain the 3D skeleton𝐴0 that is projected to𝑃 ′

0 in the virtual
surrounding projection stage with projection matrix 𝐶0.
3.2. 3D Action Synthesis Network

We synthesize motion in 3D space since MoCap datasets 
are relatively abundant and we would like focus on the 
actions themselves while ignoring factors such as human 
bone lengths and different camera viewpoints that should be 
considered in 2D space.

We collect freely available MoCap datasets [8; 36; 39; 
54; 18; 21; 17; 63; 27; 24] and unify them to obtain a single 
MoCap dataset by retargeting different characters in different 
datasets to the same basic character. The MoCap dataset 
contains many other kinds of human actions, while we just 
retain the actions of walking.

Let 𝑆 = (𝐴0, 𝐴1, ⋯ , 𝐴𝑀−1), where 𝑆 ∈ ℝ𝑀×63, be 
a skeleton sequence with 𝑀 = 240. From 𝑆, we extract
the trajectory 𝑇 ∈ ℝ𝑀×3 which is computed as the root 
position differences along the X and Z axes and the forward
direction differences a round t he Y -axis b etween adjacent
skeletons 𝐴𝑖 and 𝐴𝑖+1 in 𝑆

×4
. In addition, we also compute foot 

contact labels 𝐺 ∈ ℝ𝑀 from 𝑆, which indicate whether 
the toe and heel of the left and right foots of each skeleton
are below a certain height and velocity or not. The footstep
contact label 𝐺 is computed automatically in our system. 
Specifically, we train a regressor that outputs 𝐺 given a 
trajectory 𝑇 following the method described in [18]. The
user only needs to provide a trajectory 𝑇 by such as B�́�zier 
interactive tool at test time.

With the above preparations, our aim is to synthesize
𝑆 given 𝐴0, 𝑇 and 𝐺, and we achieve this by training a
neural network. Following [18], our motion synthesis net-
work is shown in Fig. 4 which contains two steps. In the
first step, we train an autoencoder comprising encoder 𝐸𝜃and decoder 𝐷𝜙, in which 𝐸𝜃 accepts a skeleton sequence
𝑆 = (𝐴0, 𝐴1,⋯ , 𝐴𝑀−1), and 𝐷𝜙 tries to reconstruct the
input sequence and outputs �̂� = (�̂�0, �̂�1,⋯ , �̂�𝑀−1). The
hidden representation in the bottleneck learned by the au-
toencoder is in the space ℝ

𝑀
2 ×𝑑 with 𝑑 = 256. We train the

autoencoder by the following loss:

𝐿𝐴𝐸 =
∑

𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑀−1
∑

𝑖=0
‖𝐴𝑖 − �̂�𝑖‖22. (8)

After training the autoencoder, the encoder 𝐸𝜃 is discarded
and the parameters of the decoder 𝐷𝜙 are fixed. We design
another encoder 𝐸𝜓 and link it with 𝐷𝜙 to form the second
encoder-decoder network. Instead of motion sequence, the

Figure 4: 3D action synthesis network is composed of two
encoder-decoder networks trained asynchronously. At step
1, an autoencoder is trained to reconstruct 3D skeleton
sequences. At step 2, the decoder in the autoencoder is frozen
and linked with another encoder. The decoder still outputs
skeleton sequences but the inputs to the new encoder are the
first skeleton 𝐴0, the trajectory 𝑇 , and the foot contact labels
𝐺.

data input into 𝐸𝜓 are high-level control signals 𝐴0, 𝑇 and
𝐺, while the output of 𝐷𝜙 is still �̂�. The parameters of 𝐸𝜓are trained by the loss in Eq. 8 too.

For 𝐸𝜃 and 𝐷𝜙, we borrow the network architectures
in [18], while for 𝐸𝜓 we design a different network, since
besides 𝑇 and 𝐺 we introduce a new input 𝐴0. As shown in
Fig. 4, 𝐸𝜓 is composed of two branches, one processing the
concatenation of𝐴0, 𝑇0 and𝐺0 where 𝑇0 and𝐺0 are the first
element of 𝑇 and 𝐺 respectively, the other one processing
the concatenation of 𝑇 and 𝐺. The first branch just contains
a single convolutional block comprising a dropout layer, 1D
convolutional layer, and a ReLU activation layer. The second
branch consists of three such blocks. The first branch outputs
features in the space ℝ1×𝑑 , while the second branch outputs
features of size ℝ𝑀×𝑑 . We replace the first row of the second
feature map with the feature vector of the first branch. The
combined features are then fed into a convolutional block
and a pooling layer, obtaining features in the space ℝ

𝑀
2 ×𝑑

that can be input into the decoder 𝐷𝜙.
At test time,𝐴0 is obtained by the pose retrieving method

in Section 3.1, 𝑇 is specified by user, and 𝐺 is computed
from 𝑇 by a simple feedforward network also trained on the
MoCap dataset [18].
3.3. Action Transfer and Shape Preserving

Network
After action synthesis, we obtain a skeleton sequence

�̂� = (�̂�0, �̂�1,⋯ , �̂�𝑀−1). In this section, we show how to
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Figure 5: The action transfer and shape preserving network.
The architecture of the network is an encoder-LSTM-decoder
structure. The losses used to train it are carefully designed,
including a reconstruction loss for preserving shape of input
2D pose, an action transfer losses and a temporal smoothness
loss.

transfer the actions of these skeletons to a set of 2D poses
while at the same time making these poses have the same
shape as the pose 𝑃0 of the input person.

Firstly, we project �̂� into the 2D space by 𝐶0, obtaining
a set of poses 𝑃0, 𝑃1,⋯ , 𝑃𝑀−1. Then we design a Long
Short-Term Memory (LSTM) network [16] that takes 𝑃0 and
𝑃1,⋯ , 𝑃𝑀−1 as input, and outputs the target pose sequence
𝑃0, 𝑃1,⋯ , 𝑃𝑀−1. As shown in Fig. 5, the action transfer
and shape preserving network is very simple. Each input
pose is firstly processed by an encoder, changing pose into
feature space. Then the features are processed by LSTM
cell, the output of which is decoded by a decoder to obtain
the corresponding output pose. The encoder comprises two
linear layers and a ReLU activation layer, mapping the input
pose into space of ℝ𝑑 (𝑑 = 256). The decoder has the same
architecture as the encoder, but mapping feature in ℝ𝑑 into
the pose space.
3.3.1. Training Losses

While the network architecture is simple, the loss func-
tion used to train the model should be carefully designed
in order to achieve the action transfer and shape preserving
goals. Our loss function contains absolute reconstruction
term, relative orientation and position terms, and smooth-
ness term.

Firstly, we define a reconstruction loss between 𝑃0 and
𝑃0, forcing the network to inherit shape of 𝑃0, which is
defined as the mean square error between the corresponding
joints of 𝑃0 and 𝑃0:

𝐿𝑟𝑒𝑐𝑜𝑛(𝑃0, 𝑃0) =
∑

𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝐽
∑

𝑗=1

‖

‖

‖

𝑃0,𝑗 − 𝑃0,𝑗
‖

‖

‖

2

2
, (9)

(a) (b)

Figure 6: (a) Limbs whose orientations are computed. (b) Pairs
of key joints between which relative distances are computed.

where 𝑃0,𝑗 denotes the absolute position of the 𝑗𝑡ℎ joint and
𝐽 is the total number of the joints.

Secondly, for poses from timestep 1 to 𝑀 − 1, we do
not have corresponding ground-truth poses to compute the
absolute distance as in Eq. 9. Instead, we compute relative
distances between them and the pose of the input person,
including limb orientation loss and relative position loss of
key joints, to make the generated poses have the same action
as the input poses. The limb orientation loss function is
defined as:

𝐿𝑜𝑟𝑖𝑒𝑛𝑡 =
∑

𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑀−1
∑

𝑖=1

𝐾
∑

𝑘=1

‖

‖

‖

�̂�𝑖,𝑘 − �̌�𝑖,𝑘
‖

‖

‖

2

2
(10)

where �̂�𝑖,𝑘 denotes the orientation of the 𝑘𝑡ℎ limb of pose 𝑃𝑖,computed as the unit vector of the limb in the 2D coordinate
system, �̌�𝑖,𝑘 denotes the orientation of the corresponding
limb of pose𝑃𝑖, and𝐾 = 14 is the number of the limbs which
are shown in Fig. 6 (a). The relative position loss function is:

𝐿𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =
∑

𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑀−1
∑

𝑖=1

𝑁
∑

𝑛=1

‖

‖

‖

�̂�𝑖,𝑛 − �̌�𝑖,𝑛
‖

‖

‖1
(11)

where �̂�𝑖,𝑛 denotes the distance between the 𝑛𝑡ℎ pair of key
joints of pose 𝑃𝑖, �̌�𝑖,𝑛 is the corresponding distance in pose
𝑃𝑖, 𝑁 = 3 denotes the number of the pairs of key joints,
including shoulders, knees and ankles as shown in Fig.6 (b).

Finally, in order to make the generated pose sequence
look more smooth, we introduce a temporal smoothness loss:

𝐿𝑠𝑚𝑜𝑜𝑡ℎ =
∑

𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑀−2
∑

𝑖=0

𝐽
∑

𝑗=1

‖

‖

‖

𝑌𝑖+1,𝑗 − 𝑌𝑖,𝑗
‖

‖

‖1
(12)

where 𝑌𝑖,𝑗 denotes the height of the 𝑗𝑡ℎ joint of pose 𝑃𝑖, 𝑌𝑖,𝑗
denotes the height of the corresponding joint in pose 𝑃𝑖, 𝐽 is 
the total number of joints in the pose. We consider only
“height” in 𝐿𝑠𝑚𝑜𝑜𝑡ℎ because we find in the experiments that 
the up and down shaking is the most perceivable undesired
visual artifacts in our results. Therefore, we try to smooth the
𝑌 coordinates in a sequence. As for the 𝑋 coordinate, it is 
usually entangled with actual movements of a person. Since
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we would like to preserve high-fidelity object movements,
we do not smooth the 𝑋 coordinate.

The full loss function is defined as:
𝐿 = 𝜆1𝐿𝑟𝑒𝑐𝑜𝑛 + 𝜆2𝐿𝑜𝑟𝑖𝑒𝑛𝑡 + 𝜆3𝐿𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 + 𝜆4𝐿𝑠𝑚𝑜𝑜𝑡ℎ (13)

During training and testing, we set 𝜆1 = 1, 𝜆2 = 5, 𝜆3 = 1, 
𝜆4 = 10.

The above provides self-supervised training losses for 
the action transfer and shape preserving network. That is, we 
do not provide ground truths for the output poses. Instead, 
we design reconstruction loss, limb orientation loss, relative 
position loss, and temporal smoothness loss, which are either 
defined between the outputs themselves or between the out-
put and the input. The reconstruction loss and smoothness
loss are used to inherit shape from 𝑃0, while the limb 
orientation loss and relative position loss are used to inherit
actions from other input poses.

Since the losses used to train the action transfer and 
shape preserving network are not very complex, one can 
directly optimize the input poses by quadratic programming 
to obtain the target poses. The optimization-based approach 
is also able to generate results. However, the optimization 
is prone to local minima and sometimes time-consuming. 
The proposed LSTM-based regression approach, though 
requiring training, is fast and robust at test time.
3.4. Pose-guided Image Synthesis for Pedestrian

Animation
Now, we have predicted future poses 𝑃1,⋯ , 𝑃𝑀−1 for

the input pedestrian image 𝐼0. We finally employ the pose-
guided image synthesis model [71] to generate future images
for the pedestrian.

4. Experiments
In the following, we conduct experiments to evaluate the

effectiveness of our method. Please refer to the supplemental
materials for more information.
4.1. Training and Evaluating Datasets

The 3D action synthesis network is trained on the 3D
MoCap dataset as described in Section 3.2. The action
transfer network is trained on the synthesized 3D skele-
tons and 2D pose of images. We test our method on three
datasets including Market-1501 [67], DeepFashion [29], and
Human3.6M [21].
4.2. Implementation Details

There are two networks to train in our method: the 3D
action synthesis network, action transfer and shape preserv-
ing network. We train the 3D action synthesis network by
Adam optimizer with learning rate of 1𝑒−5, 𝛽1 of 0.9, 𝛽2 of
0.999, and batch size of 1. We first train the encoder 𝐸𝜃 and
the decoder 𝐷𝜙 for 100 epochs, then train the encoder 𝐸𝜓for another 100 epochs. The kernel and stride size of the 1D
convolutions and the rate of dropout follow the settings of
[18]. For action transfer and pose shape preserving network,

(a) 2D query poses

(b) Retrieved poses with all metrics

(c) Retrieved poses without angle difference metric

(d) Retrieved poses without relative difference metric

(e) Retrieved poses without absolute difference metric

Figure 7: Validation of the 2D pose similarity metrics. The
retrieved poses in (b) are very similar to those in (a). In each
of (c)-(e), we exclude one metric. As can be seen, there exist
bad poses retrieved, shown with black boundingbox.

(a) (b) (c) (d) (e)

Figure 8: (a) 2D poses projected from MoCap skeletons. (b)
3D skeletons of (a) computed by neural network. (c) 2D poses
from Market-1501. (d) 3D skeletons of (c) computed by neural
network. (e) 3D skeletons of (c) computed by retrieving.

we train it by RMSprop optimizer with learning rate of 5𝑒−5
and batch size of 64 for 2000 epochs.
4.3. Ablation Study

We conduct various ablation studies to validate the de-
sign choices of the proposed method.

Firstly, we show examples of queried poses and the
corresponding retrieved poses using the proposed pose sim-
ilarity metrics defined in Section 3.1. The similarity metrics
include difference in angles, difference in relative distances
between shoulders, knees and feet, and difference in absolute
positions of key joints. In order to validate the importance
of the three kinds of metrics, we show the poses retrieved
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(a) Projected poses from 3D skeletons

(b) Poses after action transfer with all losses

(c) Poses after action transfer without reconstruction loss

(d) Poses after action transfer without orientation loss

(e) Poses after action transfer without relative loss

(f) Poses after action transfer without smoothness loss

Figure 9: Ablation results of losses used to train the action
transfer and shape preserving network. (a) shows the actions
to be transferred. (b) shows results with all losses. From (c)
to (f), one kind of loss is removed at each time to show the
effect of that loss.

without one of them. The pose retrieving results are shown
in Figure 7 in which the first row gives the poses for query,
the second row shows retrieved results with all comparison
metrics, and the last three rows show poses retrieved without
angle difference, relative difference, and absolute difference
metric, respectively. As can be seen, the poses in the second
row are all very similar to their corresponding query poses.
While in other rows, there exist some poses marked with
bounding boxes that are visually different from the query
ones.

An alternative way to find the most similar skeleton for a
2D pose is to directly train a neural network between the 2D
poses and 3D skeletons. We have designed and trained such
a network that maps the 2D pose dataset obtained by virtual
surrounding projection to the corresponding 3D MoCap
dataset. During testing, the network works very well for the
poses in the 2D pose dataset as shown in Figure 8 (a) and (b)
where (a) shows two poses from the 2D pose dataset and (b)

(a) (b)

(c) (d)

Figure 10: (a)(c) Poses projected from 3D skeletons and the
corresponding synthesized frames guided by the poses. (b)(d)
Poses after action transfer and shape preserving network and
the corresponding synthesized frames guided by the poses.

shows the output skeletons by the network. However, when
tested on poses extracted from real pedestrian images (see
Figure 8 (c) from Market-1501), the network performs badly
whose results are shown in (d). This is due to the reason
that the poses extracted from specific pedestrian datasets are
different from ones in the 2D pose dataset. For example,
they may have different bone lengths and the ratio between
width and height is also very different. The network cannot
generalize well to the poses that it has never seen. Figure 8
(e) gives the results by our pose retrieving scheme, which are
much better than those in (d).

In Figure 9, we evaluate the necessity of the four losses
used to train the action transfer and shape preserving net-
work described in Section 3.3. The four losses include:
reconstruction loss for pose shape characteristic preserv-
ing, orientation and relative losses for action transfer, and
smoothness loss. In Figure 9, the first row gives 2D poses
projected from the 3D space, providing actions to be trans-
ferred. The second row shows the output of the action
transfer and shape preserving network trained with all the
losses. The third to sixth rows show results of the network
trained without the reconstruction, orientation, relative, and
smoothness loss respectively. Note that the first poses in
(b)-(f) are the same, which are the pose extracted from the
input pedestrian image. As can be seen, the poses in (b)
look very natural, everyone taking the same action as the
corresponding pose in (a), all of them having consistent
shape as the input 2D pose. Since there is no reconstruction
loss, the poses in (c) do not hold the same shape as the input
pose. The most obvious difference is in the length of neck:
those of the generated poses are much longer than that of
the input pose. Some poses in (d) look very strange due to
missing of the orientation loss, such as the last one in this
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(a) 3D skeletons along a B�́�zier curve (b) 3D skeletons along a randomly generated curve

Figure 11: For the same person, two different animations are generated given different trajectories.
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Figure 12: Comparisons between our method and PGBIG+PATN, FRGAN and CVP on examples of Human3.6M. The results
of CVP are with blurry artifacts. Our results are better than those of FRGAN in both future poses and frames. Our results are
better than those of PGBIG+PATN in poses.

row that has crossed legs. The poses in (e) are very similar
to those in (b), except that the areas of the torsos are slightly
smaller. Without the smoothness loss, the poses in (f) show
obvious discontinuities.

In Figure 10, we show the importance of the action trans-
fer and shape preserving network itself. In this figure, we
show two examples, one from the DeepFashion dataset ((a)
and (b)), and the other one from Market-1501 ((c) and (d)).
The left half ((a) and (c)) shows the poses projected from
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Figure 13: Comparisons between our method and PGBIG+PATN on examples of DeepFashion and Market-1501. Here, PGBIG is
trained on Human3.6M. When tested on DeepFashion and Market-1501, it shows many artifacts. By contrast, our method shows
higher ability of generalibility, which outputs better results in both poses and frames. Note that our method is also not trained
on the DeepFashion and Market-1501 datasets.

the synthesized 3D skeletons and the images synthesized
according to these poses. As can be seen, the synthesized
images contain lots of artifacts. This is because the pose-
guided image synthesis model is trained on each pedestrian
dataset using the poses extracted from the dataset, while the
projected poses are not similar to extracted poses from the
specific pedestrian dataset. The action transfer and shape
preserving network is used to transform the poses on the left
into the pose shape space of the corresponding pedestrian
dataset, obtaining poses on the right ((b) and (d)) for which
the pose-guided image synthesis model works well and
synthesizes better images.

Figure 11 shows examples about user interaction. For
an example from DeepFashion, we allow a user to specify
two different trajectories for the 3D action synthesis network
to plan different future actions. In the first example of this
figure (Figure 11 (a)), we use B�́�zier as the interactive tool.
For the second example (Figure 11 (b)), the trajectory is
randomly generated. For each example, the first row shows
the generated 3D skeletons, the second row shows 2D poses
projected from 3D, the third row gives poses after action
transfer and shape preserving network, and finally the last
row shows the synthesized images. As can be seen, our
method successfully generates plausible future frames for
the pedestrian, with different actions.
4.4. Comparison with Previous Approaches

We compare our method with three approaches, includ-
ing PGBIG [31]+PATN [71], FRGAN [66], and CVP [60].
FRGAN is a two-stage generation network that transforms
an image to video. The method comprises a future motion
generation network, a motion-guided image synthesis net-
work, and a refining network that considers temporal in-
formation. Their future motion generation network predicts
future poses based on a single pose, which is an extremely
difficult task due to the large ambiguities in the future. We

alleviate this problem by performing action synthesis in the
3D space with trajectory and foot contact information for
disambiguation. Since FRGAN uses a relatively simple pose
prediction model [12], we thus compare with a combination
of the latest pose prediction model PGBIG [31] and the pose-
guided image synthesis method PATN [71] (note that we
also use PATN for pose-guided frame generation). Finally,
CVP [60] is a future video frame prediction method without
explicit structure guidance.

These compared approaches all make their codes public,
and we retrain them on Human3.6M. We select the 6 sub-
jects having 2D poses as training dataset. Sequences of 240
frames at 60fps are extracted to train the compared models.
PGBIG [31] was originally designed for 3D skeleton. We
modify it to take 2D pose as input. CVP [60] needs a set of
points as input, representing the entities for which the future
positions are predicted. In our cases, the joints of the first
pose are treated as these entities.

Figure 12 shows the comparison results between these
approaches and our method on Human3.6M. We show two
examples on the left and right of the figure. For each example
and each method, we show the future poses on the top, and
the corresponding future frames right under these poses. The
first row shows image results of CVP. Since CVP does not
predict poses, there is no pose result for CVP. The second to
third rows show results of FRGAN. The fourth to fifth rows
show results of PGBIG+PATN. The last two rows show our
results. Apparently, CVP outputs worst results with lots of
blurry artifacts. Compared with the other two competitors,
our method is better in the plausibility of the future poses. As
can be seen, the poses generated by our method takes many
steps forward, while the poses by FRGAN and PGBIG are
almost static. From the aspect of future frames, the results
of FRGAN contain lots of artifacts, while the results by
PGBIG+PATN look plausible except the actions in these
frames.
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Figure 13 shows the comparisons between our method 
and PGBIG+PATN on Market-1501 and DeepFashion. The 
other two approaches cannot be applied to the two datasets, 
as they cannot be trained when there is no sequential data. 
PGBIG is trained on Human3.6M, but we test it on Market-
1501 and DeepFashion. We choose one example from each 
dataset, and show the predicted poses and frames for each 
example. As can be seen, the poses generated by PGBIG are 
much worse than ours, demonstrating that PGBIG trained on 
the poses of Human3.6M fails to process poses from Market-
1501 and DeepFashion. The action transfer and shape pre-
serving network in our method helps our method smoothly 
adapts to different datasets. Accordingly, the future frames 
generated by PATN based on the poses of PGBIG are blurry 
and distorted, while our results are much better.
4.5. User Study

There is no standard metric to quantitatively evaluate the 
quality of the generated future poses and images, as there 
is no ground truth. Therefore we carry out a user study for 
this aim. We randomly choose 10 pedestrian images from 
Human3.6M, and use FRGAN, CVP, PGBIG+PATN, and 
the proposed method to generate future poses and frames 
for these images (CVP can only produce future frames). We 
then convert the pose and frame sequences into GIF images. 
For each pedestrian, we place the GIFs of poses side by 
side in a row and the GIFs of frames in the other row right 
below the poses. The results of the same method are in the 
same column, while the orders of different methods along 
the row are randomly disturbed. In this way, we obtain 10 
groups of results. We then recruit 10 participants without any 
training and show each one the 10 results. They are asked to 
answer two questions after watching each group of results. 
The first question i s: which pose do you t hink i s t he most 
natural, realistic and smooth? The second question is: which 
image do you think is the most natural, clear and has the least 
artifacts?

The results of the user study are shown in Table 1. 
For both questions, most of the participants (nearly eighty 
percent) hold the view that our results are the best. The 
second best is PGBIG+PATN. This is because compared 
with our method, though PGBIG can not predict detailed 
actions for the pedestrians, it has indeed learned global rota-
tions of them. Therefore, some participants may be cheated 
by the overall smooth rotation impression of the results 
of PGBIG+PATN, without noticing the nearly static body 
shape. The results of FRGAN and CVP are apparently worse, 
therefore much fewer participants recommend them as the 
best.
4.6. Running Time

Our method comprises several steps. In Table 2, we list 
the time used in each stage at test time for our approach. 
Firstly, the pose estimation stage, i.e., extracting pose from 
a given pedestrian image, is very fast, just taking 0.036s on 
average. Since we need to traverse a very large 2D pose 
dataset, we use KD-Tree to accelerate the pose retrieving 
stage. On average, it takes 1.3s. The three networks are

Table 1
A user study used to compare our method with FRGAN, CVP,
PGBIG+PATN quantitatively. 77.5% participants on average
view our results as the best.

FRGAN CVP PGBIG + PATN Ours + PATN

Q1 6% 0% 15% 79%
Q2 6% 1% 17% 76%

Avg. 6% 0.5% 16% 77.5%

Table 2
Time used in each stage of the proposed pedestrian animation
framework.

Step Running time

0.036s
1.3s

1.102s
0.004s

Pose Estimation
Retrieving

3D Action Synthesis
Action Transfer and Shape Preserving 

Image Synthesis 0.112s

Total 2.554s

very fast, taking 1.102s, 0.004s, and 0.112s respectively. The 
whole time needed to animate a pedestrian costs about 40s.
4.7. Limitations and Future Work

In this paper, we mainly focus on future pose generation. 
For future frame generation, we employ the state-of-the-art 
pose-guided image synthesis method [71]. Since the frames 
are generated one by one while ignoring the consistency 
between them, there may exist shaking and blinking artifacts 
in the generated frame sequence. Besides, it is difficult to 
generate information about occluded body parts in the given 
static image. For example, the left side of Figure 14 shows 
the same person with different poses. Since the hair in the 
input image is occluded, the hair in the output image is 
not correctly synthesized. As shown on the right side of 
Figure 14, the resulting pose may exhibit a degree of bow-
legging (see the second image of the sequence of output), 
and pants might be mistakenly generated as skirts. Based on 
the above analysis, one task in the future is to investigate a 
more effective pose sequence guided future f rame genera-
tion model, considering temporal consistency and handling 
occlusions.

5. Conclusion
In this paper, we present a novel framework for trans-

forming a pedestrian image to a sequence of images con-
taining dynamically walking states of the pedestrian with
plausible future poses generated for the pedestrian. Our
method takes a single pose of the given pedestrian as input.
Resorting to 3D MoCap dataset, we plan future actions for
the pedestrian in 3D space, and propose a network to transfer
the 3D actions to the given 2D pose while preserving the
shape of the input 2D pose. This idea makes our method able
to process pedestrian datasets even they just contain images,
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Input Outcome A squence of output

Figure 14: Failure cases. Left: occluded region (hair) is not
correctly synthesized. Right: bowlegs (second image) and pants
becoming skirts (second to fourth images).

thus enhancing the generality of our method. We allow users
to control the action synthesis in 3D space by providing
a global trajectory. We have shown that this additional
information can help user to generate different animation
results for the same pedestrian image. After obtaining future
poses, we use the existing state-of-the-art pose-guided image
synthesis method to compute the corresponding frame for
each pose. In the future, we will investigate an unified pose
prediction and pose-guided frame generation framework for
more temporally consistent animation videos.
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