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Abstract In recent years, significant advancements have been made in audio-driven 3D facial animation, unlocking its
vast potential in applications spanning gaming, digital humans, and virtual reality. Nevertheless, existing 3D methods for
facial animation have fallen short in delivering truly natural and realistic results, often prioritizing lip movements while
neglecting facial expressions across other regions. To address this, we propose a disentangling head NeRF for 3D facial
animation. Specifically, we train a head NeRF that completely disentangle semantic latent codes of the face including the
expression and the intrinsic properties (Identity) and use an well-designed network architecture and loss items to learn
generating realistic facial expressions while keeping lip synchronization via a lip sync module. The experiments show that
our work outperform the state-of-the-art methods on objective and subjective metrics.
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1 Introduction

The advancement of 3D digital human technology

has ignited a surge of interest in the realm of facial an-

imation for talking heads. This burgeoning field has

quickly become a focal point of research within the do-

mains of computer graphics and computer vision, of-

fering immense potential for applications across diverse

industries, including film production, gaming, mixed

reality, and beyond. The primary objective of facial

animation is to produce a realistic and expressive video

of a person speaking, synchronized with a specific audio

clip. This is achieved by harnessing a series of source

videos that capture the person’s facial expressions and

movements, creating a seamless blend between the au-

dio and visual elements.

Presently, there are notable constraints associated

with the existing techniques in this domain. The major-

ity of current approaches, as demonstrated in recent re-

search such as works [1, 2], heavily depend on paramet-

ric models like BFM [3], 3DMM [4], and FLAME [5].

These models are employed to offer foundational in-

sights into the shape and texture of facial structures.

However, owing to the restricted expressive capabilities

of these intermediary models, they encounter challenges

in effectively decouple facial expressions from inherent

facial attributes. Consequently, this limitation leads to

a loss of information and misalignment between the fa-

cial expressions and lip movements. Recently, Neural

Radiance Field (NeRF)[6] has shown great promise in

3D object synthesis and rendering for its ability to ren-

der high-fidelity images with rich details. AD-NeRF[7]

directly maps the audio features to neural radiance

fields to edit the talking head, DFRF[2] proposed a dif-

ferentiable face warping module conditioned on audio

signals to synthesize talking head videos fast and data

efficiently. The intrinsic characteristics and facial ex-

pressions on the face are closely intertwined within the

latent space of the NeRF. However, the facial animation

procedure has the potential to alter the fundamental

attributes of the human face, resulting in inaccuracies

and unrealism in the generated video.

In this paper, we propose a disentangling Head Neu-

ral Radiance Field which completely disentangles one

person’s identity, expression, albedo and illumination

ensuring that the synchronization of lip movements

and the conveyance of expressions driven by speech au-

dio are not only accurate but also profoundly realistic.

Without the intermediate model such as FLAME[5] or

3DMM[4], our method generates talking head video in
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Fig.1. Illustration of the Facial Animation Task. Our framework takes a short clip of talking head video
and a speech audio clip as the input, and trains a dynamic disentangling Head NeRF. A new talking head
video are generated from the corresponding input audio.

an end-to-end way. This obviates the potential errors

and discrepancies that can arise from these interme-

diate face representations. Additionally, our method

capitalizes on the full spectrum of the video clip, allow-

ing us to capture a personalized facial expression. We

enhance this process with a lip synchronization module

utilizing contrastive learning which ensures that the lip

area is primarily synchronized with the audio clip while

the remaining parts of the face are influenced by indi-

vidualized attributes and talking style.

In summary, our contributions in this work are as

follows:

• We propose a comprehensive end-to-end 3D facial

animation framework that generates a accurate

and highly realistic talking head video clip from

an audio clip without any intermediate models.

• We disentangle the attributes including Identity,

Expression, Albedo and Illumination of a human

face in the latent space and get detailed and ac-

curate expression driven by the speech audio.

• We evaluate the performance of our facial anima-

tion model through extensive experimentation on

multiple datasets. And the results demonstrate

that our method surpasses existing baseline ap-

proaches, both in terms of objective metrics and

subjective evaluations.

2 Related Work

2.1 Neural Radiance Fields

Neural Radiance Fields (NeRF)[6] technique utilizes

a fully-connected neural network to store the geometry

and appearance of an object in voxel grids. It allows

for implicit modeling of the 3D structure of a specific

object without relying on a 3D model. This approach

has found success in various aspects of 3D scene.[8, 9].

Initially designed for static object modeling, subsequent

works[10] have extended NeRF to dynamic scenes, some

of which focused on face representation[11, 12, 13] and

editing[8, 14, 15].

Gafni et al.[11] combine NeRF network with a low-

dimensional morphable model to provide explicit con-

trol over pose and expression, which can be learned

from monocular input data only. HeadNeRF[12] pro-
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posed a NeRF-based parametric head model that ren-

ders high fidelity h ead i mages i n r eal-time, a nd sup-

ports directly controlling pose and expressions. Be-

sides, NeRF has also been employed as the funda-

mental pipeline for talking head synthesis in several 

works[7, 16, 17, 18], resulting in satisfactory genera-

tion results. However, for facial animation task, ex-

isting works did not use the prior knowledge of hu-

man face and did not seperate the latent space into 

several semantically meaningful space. Inspired by 

HeadNeRF[12], our work leverage NeRF for talking 

video synthesis and use the disentangled latent codes 

to get an accurate and realistic rendering result.

2.2 2D-based Talking Portrait Synthesis

In the early stage, most works[19, 20, 21, 22, 23]of 

talking head video generation are based on 2D im-

age techniques such as GAN (Generative adversarial 

networks) [24] or image-to-image translation[25]. To 

bridge the gap between audio and face expression, the 

semantically meaningful information need to be ex-

tracted from audio using Automatic Speech Recogni-

tion (ASR) models including DeepSpeech[26], Wav2vec 

[27, 28], and HuBERT[29]. Some works[19, 22] use 

2D landmarks as the intermediate face model to en-

codes the expression, while some works[30, 31, 32] use 

3DMM[4].

ATVG[33] devised a cascade GAN approach to gen-

erate talking face video that avoids fitting spurious cor-

relations between audiovisual signals that are irrele-

vant to the speech content. Wav2lip[22] introduced a 

powerful lip-sync discriminator to morph the lip move-

ments of arbitary identities and proposed a new, rig-

orous evaluation benchmarks and metrics to measure 

the accuracy of lip synchronization. LSP[34] lever-

aged a network that extracts deep audio features and 

project the features to the target person’s speech space.

MakeItTalk[19] separated the content and speaker in-

formation in the input audio signal and extended it

to artistic paintings and cartoon characters. Chen

et al.[31] achieves controllable and temporally coher-

ent talking-head videos with natural head movements

through modeling the head motion and facial expres-

sions.

As these methods do not acquire the 3D structure of

the human face, they inherently lack the capability to

facilitate free viewpoint switching and often encounter

challenges in maintaining consistency across multiple

views. Additionally, the absence of 3D facial informa-

tion can result in less vivid and realistic expressions,

occasionally leading to distortions when compared to

models founded on 3D-based representations.

2.3 Audio-driven 3D Talking Head Generation

3D-based audio-driven facial animation methods are

capable of generating more realistic and multi-view con-

sistent talking head videos than the 2D-based ones.

Early works[35, 36, 37] usually utilized the 3D Mor-

phable Models (3DMM)[4] as an intermediate model to

get the prior knowledge of a human head. With the

booming of NeRF, several works[7, 16, 17, 18] synthe-

size the talking head video using NeRF to represent the

human face.

AD-NeRF[7] is the first to utilize NeRF for audio-

driven 3D facial animation and successfully get the

photo-realistic results. RAD-NeRF[16] further im-

proves the representation structure of the face NeRF

and achieve real-time facial animation. DFRF.[2] pro-

poses a model that can rapidly generalize to an un-

seen identity with few training data by conditioning

the radiance field on appearance images to learn the

face prior. DFA-NeRF[17] takes lip movements features

and personalized attributes as two disentangled condi-

tions to learn plausible lip motion, head pose and eye
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Fig.2. An overview of the architechture of our work. Our method takes several input frames from a monocular talking
head video and reconstructs a disentangling head NeRF. The feature input audio are extracted and then convert to lip
features with contrastive learning. After volume rendering and 2D nueral rendering, we can calculate the loss items
between the result image I and the ground truth IGT .

blink. Geneface[1] enhances the generalizability to out-

of-domain audio by learning a motion generator on a

large lip-reading corpus, and introduce a domain adap-

tative post-net to calibrate the result.

Different from these methods, our approach does

not rely on a template mesh or an explicit surface rep-

resentation, such that the error accumulation can be

alleviated. Instead, we represent the geometry and ap-

pearance implicitly using a NeRF that has disentan-

gling latent space and use volumetric rendering to gen-

erate high-fidelity images of the audio-driven talking

head.

3 Method

3.1 Overview

In this work, we propose Disentangling NeRF, a

novel a disentangling facial Neural Radiance Field

model that disentangles one person’s Identity, expres-

sion, albedo and illumination, so that the movement of

the lips and the expressions driven by the speech audio

will be accurate and realistic. As shown in Figure 1,

the model take a short clip of talking head video and

the corresponding speech audio as input, and the final

output is the synthesized talking head video rendered

by our NeRF. In order to use the audio to drive the ex-

pression animation of the face, the audio per-frame fea-

ture FA is extracted by HuBERT[29], the sate-of-the-

art speech representation learning model. Meanwhile,

the input video frames are processed with Face2Face[38]

module to estimate the head pose and the tracked face

with landmarks. With these extracted attributes, we

can initialize the learnable semantic latent codes C in-

cluding identity Cid, expression Cex, albedo Cal and

illumination Cill of the image at each time, by which

we can render the synthetic talking head video with

the proper expression and lip movement using volume

rendering. Beside, the loss terms are well designed to

ensure the high quality of the reconstruction and the

facial animation task(Section 3.3).
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Fig.3. Illustration of the contrastive learning in the Lip Sync module. The fea-
tures are extracted with the encoders. The positive and negative sample’s encoder
Eaudio share the same weights. The goal of the contrastive learning is to maxi-
mize the distance between the features of positive sample and the anchor sample,
while minimize the distance between the anchor’s and the negative’s.

3.2 NeRF Model Architecture

We propose a NeRF that can reconstruct a 3D face

from several photos from a video clip without camera

poses. The model can render a image It with several

learnable latent codes C, including Cid, Cex, Cal and

Cill, representing identity, expression, albedo and il-

lumination respectively. We first track the motion of

head following the face tracking method Face2Face[38]

and get the estimated head pose P , and then inversely

calculate the camera pose Pcam including the rotation

matrix R and the translation vector T , assuming that

the head is stationary. With the face tracking method,

we can get the low dimensional expression parameters

of the 3DMM as Fexp, which can be used as condition-

ing for the NeRF model. Besides, with the extracted

audio feature FA, we can learn a lip movement embed-

ding Flip with the Sync Module as the input of volume

rendering (See Section 3.4). Inspired by HeadNeRF[12]

and some other previous works[39], we predict a high-

dimensional intermediate feature map M of the image

I using volume rendering, and then use a 2D neural

rendering module to get the high-fidelity rendered im-

age.

The radiance field is a function of position coordi-

nate x, viewing direction v and latent codes C. The

volume rendering can be formulated as:

Dθ(x,v, Pcam, C, Flip) = (σ(x),M(x)) (1)

where θ is parameters of the volumetric rendering

multi-layer perceptron (MLP), σ(x) represents volume

density of position x, and M(x) represents the interme-

diate feature map of the image I which is characterized

by 256 dimensions.

After volume rendering, we use a 2D neural render-

ing module to get the final high-fidelity image I from

the intermediate feature map M . Similar to [39] and

[12], the neural rendering module consists of several

Conv2D and leaky ReLU layer, through which the res-

olution of the image gradually increases.
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3.3 Loss Function

We train our facial animation NeRF on

VOCAset[35], a dataset that provides ground truth

of 3D facial animation. Our model learn the volumet-

ric rendering network parameters θ, neural rendering

network parameters and the latent code C during the

training process under the supervision of the following

loss terms. We define the total loss as the weighted

sum of the loss items below:

Ltotal = λrec · Lrec + λdis · Ldis + λv · Lv (2)

where λ∗ is the weights. In our setting, λrec = 1,

λdis = 5, and λv = 10.

Reconstruction Loss The reconstruction loss Lrec

evaluate the 3D face reconstruction quality of the NeRF

model. In this work, it consists of photometric loss and

perception loss.

Lrec = Lper + Lpho (3)

The perception loss[40] Lper measures how well the

generated image matches the desired image. By com-

paring the features extracted from the generated and

target images at different levels. Perception loss helps

guide the optimization process to minimize the discrep-

ancy between the two images, resulting in better image

generation, which can be formulated as:

Lper =
∑
i

∥ϕi(I)− ϕi(IGT )∥2 (4)

where ϕ represents a VGG16 network and i means

the ith layer.

The photometric loss Lpho measures measures the

dissimilarity in the pixel values, color, and texture be-

tween the rendered result and the groungtruth image.

By utilizing photometric loss, our models can effectively

learn to recreate visually accurate and realistic repre-

sentations of the target human face.

Lpho = ∥m(I)−m(IGT )∥2 (5)

where m(∗) represents the extraction method[38] of

the masked area of human face.

Disentangled Loss In our model, we use contrastive

learning method to get the disentangled latent codes

of the reconstructed human face. We first pre-train

a latent code extractor with the same structure as

HeadNeRF[12]. To get a better quality of disentangling

of the latent codes, we further use contrastive learning

method to train the extractor (the encoders). Specifi-

cally, we use the images of the same person with differ-

ent expressions as negative sample pairs, and the images

of different people with the same expression as positive

sample pairs so that we can train the expression en-

coder properly. Similarly, the identity latent code Cid’s

encoder can be pre-trained with contrastive learning.

With the pre-trained latent code extractor, we can

get the referential latent codes C̄id, C̄ex, C̄al, and C̄ill.

In our model, we use the disentangled loss to ensure

that the inferred learnable latent codes of the NeRF

are near the referential ones. Therefore the disentan-

gled loss can be formulated as:

Ldis = λid∥Cid − C̄id∥2 + λex∥Cex − C̄ex∥2

+ λal∥Cal − C̄al∥2 + λill∥Cill − C̄ill∥2 (6)

where λ∗ stands for the weight of each item.

Animation Velocity Loss The facial animation

task need to keep time consistency. That is, the ex-

tent of change in expression over time should remain

roughly constant. In this way, the facial animation re-

sult will not suffer from an unnatural sudden change,
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thus resulting in a realistic synthesized video. Inspired 

by VOCA[35], to ensure the temporal consistency, we 

introduce a velocity loss term Lv as bellow:

Lv = ∥(Ij − Ij−1)− (IjGT − Ij−1
GT )∥2 (7)

where Ij represents the jth frame of the predicted

facial animation video and IGT is the ground-truth.

3.4 Lip Sync Module

Because the other loss items guide the model to

learn a averaged facial expression, so that the facial

animation result will encounter a so-called ”mean face”

problem. Specifically, the generated or animated faces

will have a tendency to converge towards an neutral

expression, resulting in poor lip synchronization per-

formance. To solve this problem, we introduce a lip

sync loss item to make the movements of the lips be

properly associated with the driving speech audio.

Because the lip motion is highly related to the driv-

ing audio, we can get a heuristic method that directly

control the opening and closure of the mouth by ana-

lyzing the audio. Specifically, during the brief period

before producing consonants like ”b,” ”p,” ”m,” and

”f”, the lips close together, while when producing vow-

els like ”a,” ”o,” and ”i”, the lips open wide.

To make use of this prior knowledge, we introduce

a synchronization module to enhance the lip sync per-

formance in the facial animation task. In detail, given

the audio feature Fa extracted with HuBERT from the

driving speech audio, we introduce a contrastive learn-

ing module that can control the lip motion to be more

accurate and realistic.

In detail, as shown in Figure 3. given a short clip of

talking head video, the corresponding audio, and a irrel-

evant audio clip, we use a lip expression encoder to get

the lip movement feature Flip and a audio feature en-

coder to get the audio-lip feature Fal. In the contrastive

learning process, the lip expression of the video is set

as the anchor sample, and the corresponding audio clip

is set as the positive sample while the irrelevant one

is set as the negative sample. The audio-lip feature of

the positive and the negative sample are denoted as F+
al

and F−
al respectively. We optimize the encoder in order

to maximize the distance between F−
al and Flip, and

minimize the distance between F+
al and Flip. During

training, for each anchor sample, we select one positive

sample and N negative samples (N = 10). To achieve

this goal, we employ the Info noice-contrastive estima-

tion (Info NCE) following CPC[41] as the loss function:

Llips = − log
exp(d(Flip, F

+
al)/τ)

exp(d(Flip, F
+
al)/τ) +

∑
N

exp(d(F, F−
al )/τ)

(8)

where d(∗) is a cosine distance function for 2 vectors:

d(a,b) =
a · b

∥a∥2∥b∥2
(9)

and τ is a temperature hyper-parameter set as 0.5.

4 Experiment

4.1 Dataset

The VOCA (Voice Operated Character Animation)

dataset[35] is a large-scale audiovisual dataset specifi-

cally designed for training and evaluating models in the

field of speech-driven facial animation. It aims to facili-

tate research and advancements in areas such as speech

synthesis, speech recognition, and computer graphics.

The VOCAset comprises synchronized 4D facial

scans, audio recordings, and 3D facial landmarks. It

encompasses a diverse set of subjects, recording vari-

ous facial expressions and speaking styles. The dataset

includes 109 individuals covering diverse age groups,

genders, and ethnic backgrounds.

Notably, the facial scans in the VOCA dataset cap-

ture not only the facial geometry but also the temporal
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Fig.4. A qualitative result compared to other works including LSP[34], AD-NeRF[7] and Geneface[1]. The
red box indicates the area where lip movements are inaccurate, the green box encloses the disharmony
between the head and the body, and the blue box marks the blurry areas.

dynamics of facial movements. This temporal informa-

tion is derived from high-quality RGB-D sequences and

enables the generation of realistic and detailed facial

animations synchronized with speech.

4.2 Implementation Details

We train our model with VOCAset. The Training

process uses one NVIDIA RTX 3090 GPU. We carry

out our experiments under the environment of python

3.7 with torch 1.10 and cuda-toolkit 11.1. We train our

NeRF model for 800k iterations which takes about 60

hours.

We compare the performance of our model with

several latest works including AD-NeRF[7] Geneface[1]

Wav2lip[22].

4.3 Evaluation Metrics

To evaluate image quality, we make use of the FID

score[42], PSNR, and SSIM as evaluation metrics. For

evaluating audio-lip synchronization, we employ land-

mark distance (LMD)[43] and Sync-net confidence score

(Sync Score)[22].

Frechet Inception Distance (FID) score measures

the similarity between real and generated facial ani-

mations based on their feature distributions. It utilizes

the Inceptionv3 neural network to extract features from
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PSNR SSIM FID Sync score LMD

Wav2lip 29.03 0.849 70.938 7.329 3.875
LSP 29.37 0.917 33.961 5.039 4.268

AD-NeRF 29.97 0.919 33.281 4.579 4.266
Geneface 30.14 0.934 29.286 5.346 3.571

Ours 30.16 0.937 30.294 5.236 3.559

Table 1. The quantitative comparison with different works. We use the
videos proposed in [19] including Obama1, Obama2, May and Nadella as the
testset. We use the released pre-trained model of other works to compare.
Best results are in bold.

both real and generated frames. Lower FID scores in-

dicate better similarity and higher quality in generated

facial animations.

Structural Similarity Index (SSIM) measures the

structural similarity between real and generated frames

by evaluating luminance, contrast, and structural in-

formation. It assesses the overall quality and fidelity

of generated facial animations. A higher SSIM score

(ranging from 0 to 1) indicates better similarity and

higher visual quality.

Peak Signal-to-Noise Ratio (PSNR) measures the

quality of generated frames by comparing them to the

original, real frames. It calculates the peak signal-to-

noise ratio, which represents the ratio of the maximum

possible power of a signal to the power of its noise.

Higher PSNR values indicate higher fidelity and better

quality in the generated facial animations.

Landmark Distance (LMD) measures the discrep-

ancy between the landmarks (specific facial keypoints)

in real and generated frames. It quantifies the accu-

racy and precision of facial alignment in the generated

animations. Smaller landmark distances indicate bet-

ter alignment and higher quality in the facial animation

outputs.

SyncNet confidence score measures the alignment

between the audio and visual aspects of a facial anima-

tion by analyzing the lip movements and correspond-

ing audio signals with the publicly available pre-trained

SyncNet[44]. The score is the average confidence score,

higher scores indicate better audio-video correlation.

See more detail in paper[44].

4.4 Quantitative evaluation

To validate our model, we conduct the evaluation

experiment compared to several remarkable works. The

quantitative results are reported in Table 1. It can be

observed that our model achieves the best performance

on most of the metrics on the test dataset.

On the PSNR, SSIM and LMD metrics, our model

achieve the best compared with other baselines, indi-

cating that the Disentangled NeRF has a great abil-

ity to render a high-fidelity photo of the human face

with similar facial landmarks compared to the ground-

truth. On the FID metric, although Geneface[1] model

achieves the highest score, our model achieves a compa-

rable result. As for the sync score metric, the proposed

2D method Wav2lip[22] achieves the best, but we also

achieve a comparable performance with the best 3D-

based method Geneface.
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PSNR SSIM FID Sync score LMD

Ours 30.16 0.937 30.294 5.236 3.559
Ours w/o sync module 29.58 0.916 34.562 4.593 4.245
Ours w/o disentangling 29.31 0.904 35.732 4.682 3.958

Table 2. The ablation study of the lip sync module and disentangling. We compare the
performance between our model, our model without the lip sync module and our model
without disentangling loss. Best results are in bold.

Fig.5. an example of qualitative result compared to AD-NeRF[7]
and the ground truth. The lip movement synchronization of ours
is much better than that of the baseline method.

4.5 Qualitative evaluation

As shown in Figure 4, our model can generate more

realistic and natural result compared to the baselines.

AD-NeRF uses 2 NeRF to render head and torso sepa-

rately, which sometimes leads to distortion at the neck,

which are marked in the green box in Figure 4. Be-

sides, without a disentangling process, the lip area of

the talking video generated by other methods appears

to be blurred in some frames, which are marked in the

blue box. Compared to the ground truth, the lip mo-

tion generated by all baseline models are different and

inaccurate, which are marked in the red box. However,

in out work, by utilizing a whole NeRF with disentan-

gling loss and a sync module, we appropriately solve

the problems and achieve a better performance.

Another example of qualitative comparison is shown

in Figure 5. By comparing Ours with AD-NeRF[7]

and the ground truth, Our results are far closer to the

ground truth and have better temporal coherence and

visual quality. A more intuitive comparison can be seen

in the supplementary demonstration video.

As a 3D NeRF based facial method, our method

is able to generate novel views from different camera

poses. Figure 6 shows the pose manipulation results

of our method. The results indicate that we can freely

adjust head poses of the generated talking head within

a range of perspectives, which is valuable in various

applications.

Fig.6. an example of head pose manipulation. Each row from
left to right: novel view from left viewing direction, original view
from middle, and novel view from right viewing direction.
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4.6 Ablation Study

To validate the effectiveness o f t he p roposed mod-

ules in the paper, we conduct several ablation studies. 

By systematically removing specific elements and com-

ponents of our method, we can analyze the impact of 

these modules on the overall performance, thus know-

ing the significance of the modules.

Lip Sync Module To validate the effectiveness of 

the Lip Sync Module (Sec 3.4), we remove the lip sync 

module and retrain our NeRF without the lip feature 

Flip as input. In this way, the audio feature can not di-

rectly contributes to the volume rendering process, thus 

resulting in a poor performance on the audio-video syn-

chronization, especially in the areas around the lip. As 

shown in Table 2, the sync metrics including Sync score 

of the model without the lip sync module are signifi-

cantly lower than the full model. Plus, the Landmark 

Distance of it is much higher than the full model, in-

dicating the facial expression is significantly inaccurate 

compared to the model with the lip sync module.

Disentangling Loss To validate the effectiveness of 

the Disentangling loss (Sec 3.3), we remove the disen-

tangling loss item and retrain our model. In this way, 

the learnable latent codes C will no longer be super-

vised to be uncoupled with one another. That is to 

say, the change in a person’s expression will affect not 

only the latent code Cexp, but other latent codes as 

well. During the facial animation process, the latent 

codes all change irregularly, thus resulting in an unnat-

ural and unrealistic volume rendering result. As shown 

in Table 2, the metrics evaluating the quality of the 

generated frames including SSIM, PSNR of the model 

without the disentangling loss are significantly lower 

than the full model, indicating that the facial anima-

tion performance is worse compared to the model with

the lip sync module.

5 Conclusion

In this paper, we have proposed a Disentangling

Facial Neural Radiance Field for talking head synthe-

sis, which completely disentangles the Identity, expres-

sion, albedo and illumination of the face, so that the

movement of the lips and the expressions driven by the

speech audio will be accurate and realistic. We argue

that by using proper loss items and synchronization

module, our model can generate natural and accurate

talking face in an end-to-end manner. Our study shows

that the proposed method achieves the superior perfor-

mance generating an audio-driven talking head video.
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