
A Real-time Method for Inserting Virtual Objects into Neural Radiance Fields

Keyang Ye1, Hongzhi Wu1, Xin Tong2, Kun Zhou1

1 State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
2 Microsoft Research Asia, Beijing, China

kunzhou@acm.org

Abstract

We present the first real-time method for inserting a
rigid virtual object into a neural radiance field, which
produces realistic lighting and shadowing effects, as well
as allows interactive manipulation of the object. By ex-
ploiting the rich information about lighting and geome-
try in a NeRF, our method overcomes several challenges
of object insertion in augmented reality. For lighting es-
timation, we produce accurate, robust and 3D spatially-
varying incident lighting that combines the near-field
lighting from NeRF and an environment lighting to ac-
count for sources not covered by the NeRF. For occlu-
sion, we blend the rendered virtual object with the back-
ground scene using an opacity map integrated from the
NeRF. For shadows, with a precomputed field of spheri-
cal signed distance field, we query the visibility term for
any point around the virtual object, and cast soft, de-
tailed shadows onto 3D surfaces. Compared with state-
of-the-art techniques, our approach can insert virtual
object into scenes with superior fidelity, and has a great
potential to be further applied to augmented reality sys-
tems.

Keywords: Neural radiance field, all-frequency render-
ing, shadow, augmented reality.

1. Introduction

Neural Radiance Field (NeRF) is a popular technique for
novel view synthesis, by representing a scene with implicit
fields of density and view-dependent color, trained end-to-
end with respect to input images [31]. Substantial research
efforts have been made to extend the original work to differ-
ent scenarios (e.g., dynamic scenes [35], human bodies [34]
or illumination variations [30]).

Despite that NeRF is a promising, novel representation
with rich information about a scene, its application to aug-
mented reality (AR) is still limited. Related work focuses
on inserting a NeRF into another one [43], or a NeRF onto
a background photograph [9]. To our knowledge, very few
existing techniques exploit the information in a NeRF to
perform virtual object insertion, a classic AR task.

While our task looks straightforward at first glance, a
number of challenges arise in inserting a virtual object into
a NeRF. First, the input NeRF may not completely cover
the complete lighting information of a scene. How to com-
pensate for the potentially missing light sources? Sec-
ond, it is difficult to represent and/or precompute near-field
lighting in an efficient manner. Moreover, complex occlu-
sion/shadowing effects between the virtual object and the
NeRF must be modeled with high fidelity and performance.

To tackle the above challenges, we present in this paper
the first real-time method for inserting a virtual object into
a neural radiance field, which produces realistic rendering
with shadowing and occlusion effects, as well as allows in-
teractive manipulation of the virtual object. Our method
takes as input an HDR NeRF and one or more virtual ob-
jects only, and requires a modest overhead for precomputa-
tion and storage. To account for light sources not covered
by NeRF, we estimate a distant environment lighting with
inverse rendering. To efficiently handle near-field light-
ing, we sample the NeRF and combine with the environ-
ment lighting as the incident lighting, expressed in spherical
Gaussians (SG) for high-performance rendering. To rapidly
model shadowing effects, we precompute the self-visibility
of the virtual object, and store the result as a field of spheri-
cal signed distance fields (SSDF) [39], which can be queried
efficiently in real time. Our method compares favorably
with state-of-the-art techniques in generating high-fidelity
insertion results.

Our main contribution is the first complete framework
to insert a virtual object into a neural radiance field in real
time, an increasingly popular representation. The rest of
this paper is structured as follows. Sec. 2 discusses the re-
lated work, and Sec. 4 describes our method. In Sec. 5,
we present experiment results for both synthetic and real
scenes. Finally, Sec. 6 concludes the paper.

2. Related Work

Below we review three categories of work most related
to this paper.

Lighting estimation. Here previous work can be di-
vided into scene-based and object-based methods. Scene-

1

based methods estimate the lighting from partial view(s) of
the scene, which is similar to the task of image comple-
tion. The missing part is approximated by directly copy-
ing from input images [24], or by searching a panorama
database for an environment map similar to the input [21].
Recently, deep learning is employed to fill in the miss-
ing information. Convolutional Neural Network (CNN) or
Generative Adversarial Network (GAN) are used to predict
an environment map from input images with limited fields
of view [16, 25, 45, 27]. Garon et al. [17] take images
with coordinate masks and corresponding local patches as
input to a neural network to predict 2D spatially-varying
lighting expressed in spherical harmonics (SH). However,
learning-based methods suffer from weak generalization
ability, when the input images differ considerably from the
training set. For example, the models trained on indoor
scene datasets are difficult to generalize to outdoor [45, 15].

On the other hand, object-based methods estimate light-
ing from the appearance of object(s) presented in the scene.
A common technique is to jointly optimize the object
material and the environment lighting by inverse render-
ing [47, 37, 6, 46, 48]. This is a highly ill-posed problem,
and its solution often requires strong priors, such as smooth-
ness [47] or Lambertian only [4]. Recently, deep learning
has also been applied. Much of related work is targeted
for human faces, due to the existing prior knowledge about
their shapes and appearance [38, 8].

Our method applies inverse rendering to estimate a dis-
tant environment lighting from a NeRF to compensate for
potential missing lights not recorded in the NeRF. We take
both the near-field lighting from NeRF and the distant en-
vironment lighting into consideration and build an inverse
rendering pipeline, similar to [48].

Visibility estimation. Most contemporary AR systems
estimate depths for visibility computation. Depths can be
directly acquired with specialized devices [22, 5, 10]. To
reduce the hardware requirement, single-view approaches
apply deep learning [1, 18] or employ inverse rendering
that adds depths as additional unknowns to a joint opti-
mization [26]. When a sequence of images is available,
Multi-View Stereo (MVS) estimates depths by matching
pixels [40] or features [44]. Waston et al. [42] sidestep
the depth estimation and directly predict the occlusion mask
from a feature map. However, these methods still fall short
in some cases, especially on translucent objects or objects
with tiny structures, such as leaves on plants. In compari-
son, our method exploits the implicit geometry in a NeRF,
which can handle cases that are challenging for traditional
explicit representations.

Real-time shadows. Shadow field [49] precomputes vis-
ibility maps of samples from concentric shells surrounding
the virtual object and use SH as basis to compress them.
However, the approach only supports soft shadows when us-

ing low order SH basis. Wang et al. [39] introduce spherical
signed distance fields (SSDF) for high-frequency shadows.
Their method precomputes the SSDF at every vertex that
receives shadows, and compresses them with PCA method,
which requires both the scene and the object being static.
Kei et al. [20] approximate objects with a set of spheres and
project them to the hemisphere integral region of the shad-
ing point as occluded patches. Dynamic objects are sup-
ported at the cost of intensive computation. We propose an
SSDF field, which combines the idea of shadow field and
SSDF, to efficiently render shadows cast by the virtual ob-
ject.

3. Preliminaries

A NeRF represents a scene with a volumetric field F
of density σ, and color c which varies with a view direc-
tion d. For a ray r(t) = o + dt emitted from camera
center o along d, the rendered color Ĉ(d;o) of a NeRF
is computed with simple volumetric rendering [31]. The
opacity Ô(d;o) and depth D̂(d;o) are computed in a sim-
ilar fashion: Ô(d;o) =

∑K
k=1 T (tk)α (σ (tk) δk) and

D̂(d;o) =
∑K

k=1 T (tk)α (σ (tk) δk) tk. Here tk is a dis-
tance of a point sample traveled along the ray, tk ∈ [tn, tf],
where tn and tf are the near and far distances of the intersec-
tion of the NeRF boundary and the ray. Please refer to Fig. 2
for an illustration of tk. T (tk) is the cumulative transmit-
tance, σ(tk) are the density at the sample point on the ray
r(t). In addition, α(x) = 1 − e−x and δk = tk+1 − tk is
the distance between adjacent two samples along the ray.

While NeRF is usually trained from a set of Low-
dynamic-range (LDR) images with known intrinsic and
extrinsic camera parameters, high-dynamic-range (HDR)
maps of incident radiance are typically used to realisti-
cally render virtual objects [12, 19]. Therefore, we employ
NeRFs trained from HDR photographs as the light sources
in this paper. Moreover, we employ instant-ngp [33] as the
implementation, due to its excellent performance.

Assumptions. We assume that the virtual object is rigid
and opaque. Also its size is relatively small with respect to
the input NeRF, so that the incident lighting (ignoring occlu-
sion) does not change over its surface. For the input NeRF,
we assume that the geometry incorporated in it can be sam-
pled as surface points, and its materials are Lambertian. In
the whole pipeline, we only consider the direct illumination
and ignore interreflection effects.

Note that the above assumptions may be loosened, at the
expense of more runtime computations. For example, one
may build the incident lighting at sampled locations across
the object surface, and interpolate them to obtain the re-
sult for any point. For the surface assumption of the NeRF,
one can remove it by switching to a more involved inverse
rendering computation, which takes scattering into account.
On the high level, our framework is not limited to the above

assumptions and can be extended to handle more diverse
cases.

4. Our method

4.1. Overview

We take as input an HDR NeRF (denoted as F) and a
rigid virtual object with geometry (represented as a mesh)
and appearance (parameters stored in texture maps). First,
to compensate for potential lighting not covered by the
NeRF, we extrapolate it to an additional environment light-
ing, and then combine both into an incident lighting ex-
pressed in SGs for fast evaluations (Sec. 4.2). Next, to fa-
cilitate rapid shadow computation, we precompute the vis-
ibility field around the virtual object as a field of SSDF
(Sec. 4.3). At runtime, we render the virtual object with
estimated incident lighting and the visibility field, and com-
posite with the original NeRF as the output in real time
(Sec. 4.4). A graphical illustration of the pipeline is shown
in Fig. 1.

Note that an alternative option is to precompute an field
of incident lighting, expressed in SGs. However, the non-
linear nature of SGs makes the interpolation difficult, which
motivates our current approach for lighting estimation.

4.2. Environment lighting estimation

Ideally, all incident lighting of the virtual object comes
from F . In practice, however, F may not cover the com-
plete surroundings: there might be light sources in the
scene, which are not recorded by F . To alleviate this is-
sue, we extrapolate F to an additional distant environment
lighting to fully cover the virtual object. Specifically, we
formulate the incident lighting at a surface point x of the
virtual object along a direction d as follows:

Li(d;x) = (1− Ô(d;x))Lenv(d) + Ô(d;x)Lnerf(d;x),
(1)

where Ô(d;x) is the NeRF opacity according to Sec. 3, and
Li, Lenv, Lnerf are the incident lighting, the distant envi-
ronment lighting and the near-field lighting from F , respec-
tively.

For the environment lighting, we represent it as the sum
of M = 32 spherical Gaussian (SG) lobes, which strike
a good balance between the fidelity and rendering effi-
ciency [39]:

Lenv(d) =

M∑
k=1

G(d;pk, λk,µk), (2)

where pk ∈ S2 is the center, λk ∈ R+ is the sharpness,
µk ∈ Rn

+ is the amplitude, for a particular SG.
To estimate the SG parameters of an environment light-

ing, we perform inverse rendering by minimizing the L2

loss between the pixel value computed by NeRF volume
rendering, and the exit radiance Lo estimated by the Lam-
bertian reflection model at surface points:

Lo(x) =
a(x;Θa)

π
(Enerf(x) + Eenv(x;Θenv)). (3)

Here x is the surface point extracted from F , which is more
suitable for efficient optimization than full volumetric rep-
resentation [47]. a is the albedo parameter from the Lam-
bertian reflection model, represented as a 6-layer MLP [48]
with Θa as its parameter, jointly optimized along with the
SG parameters Θenv. Enerf is the irradiance integrated
from F via Monte-Carlo sampling on the upper hemisphere,
which is only computed once throughout the optimization.
For Eenv, we first cache the NeRF opacity at each sample
point into texture maps, and then perform importance sam-
ple according to the mixture of SGs to compute the integral
during the optimization, similar to the method of Zhang et
al. [48].

To extract surface points x from the NeRF, we first ran-
domly sample views that pointing towards the center of the
NeRF volume, with a distance of half of the NeRF grid
size. The view will be rejected if the image quality of
the corresponding NeRF rendering result is not sufficient
(BRISQUE [32] score > 50). We repeat the process until
we have 100 sampled views. Next, for the rendered image
at each sampled view, we randomly sample 64 pixels that
pass through F . For each such pixel, we compute a surface
point sample similar to [47] as:

xsurf = o+ D̂(d;o)d, (4)

where o is the camera center corresponding to the view of
the pixel, and d is the direction from o to the 3D posi-
tion of the pixel center on the image plane. The normal
of this sample is estimated by the gradient of density as
n(xsurf) = −∇σ(xsurf) for the computation of the irra-
diance mentioned above.

4.3. Visibility field precomputation

Once the environment lighting is estimated, the next step
is to precompute the visibility for any point around the
virtual object, so that such information can be rapidly re-
trieved during runtime for shadow computation. Inspired by
shadow field [49], we precompute a field of SSDF around
the virtual object, which allows fast rendering with incident
lighting expressed as SGs [39].

First, a spherical signed distance field at a point x around
the virtual object is defined as follows. Given a ray from x
along the direction d, the SSDF S(d;x) is the minimal an-
gle between d and the direction from x to the the silhouette
of the virtual object. The angle is positive when d does not
intersect with the object, and negative otherwise. Interested
readers are directed to [39] for a detailed derivation.

HDR NeRF

Virtual object SSDF field

Environment lighting

Ray tracing

Near-field lighting Incident lighting

Scene depth map

Visibility

SG-visibility
Inner product

SG rendering

Volume
rendering

Final result

Precomputation Stage Real-time Stage

Elementwise product

Surface points

Precomputation Runtime

Virtual object

𝜅

Figure 1. The full pipeline of our method. Our method takes an HDR NeRF and a rigid virtual object as input. We estimate the environment
lighting to compensate for potential lighting not covered by the NeRF. Next, we precompute the visibility field of the virtual object as a
SSDF field. At runtime, we perform ray tracing from the virtual object center to obtain the near-field lighting and the visibility of NeRF,
and compute the incident lighting fitted with spherical Gaussians (SG) to fast render the virtual object. The rendered virtual object will be
composited into the NeRF by blending. We also use the incident light and the SSDF field to compute κ for shadows at each pixel (Eq. (7)),
and multiply the pixel color by the corresponding κ to produce the final result.

𝑑

𝑡

𝑡

𝑡

NeRF

Virtual object

𝑡 𝑡ଵ

Figure 2. The illustration of sampling points for volume rendering.
Rays are emitted from the camera center to the NeRF to render the
view. For rays not intersecting with the virtual object, we sample
points with the distance range tk ∈ [tn, tf], where tn and tf are the
near and far distances of the intersection of the NeRF boundary
and the ray. Otherwise, we sample points with the distance range
tk ∈ [min(d, tn),min(d, tf)], where d is the depth value of the
virtual object, to eliminate the part of the NeRF occluded by the
virtual object.

Next, we precompute the SSDFs at sampled points
around the virtual object. Similar to [49], we use the points
on a uniform 3D grid of 16 × 16 × 16, whose center coin-
cides with that of the object xo. The length of the grid is 3
times the radius of the bounding sphere of the object. Fur-
thermore, we perform principal component analysis (PCA)
to compress all sampled SSDFs to 1.8% of the original size.

At runtime, the precomputed SSDF samples are pro-
cessed to a continuous field for pixel-level rendering. For
a point inside the grid, the SSDF can be obtained via a tri-
linear interpolation of the SSDFs at related sampled points.

For a point xf outside the grid, we snap to xb, the nearest
point in the grid. We adjust the SSDF at xb with simple
geometric relations to approximate that of xf .

4.4. Real-time virtual object insertion

With the precomputed SSDF field, we perform virtual
object insertion as follows. We compute the incident light-
ing by ray-tracing at the center of the virtual object accord-
ing to Sec. 4.2 and fit it with SGs (which we refer to it as
SG updating), render the object, composite it into the NeRF
and add shadows at each frame. Note that for SG fitting,
we adopt the estimates from the previous frame as initial
values, both for temporal stability and faster convergence.
Below are detailed descriptions.

Virtual object rendering. To model the object appear-
ance, we adopt the simplified Disney BRDF model [7] with
roughness r, metallic m and diffuse albedo a, and assume
a fixed F0 = 0.02 in the Fresnel term. As in previous
work [46, 39], the BRDF fr and the cosine term (ωi · n)
can be converted to mixtures of SGs as well. Therefore,
the rendering computation is approximated as a rapid inner
product of SGs using a fragment shader:

Lo (ωo;x) =

M∑
k=1

(G(ωi;pk, λk, γk(x)µk)⊗fr) · (ωi · n) ,

(5)
where pk, λk and µk are the SG parameters of the inci-
dent lighting at the virtual object center. γk attenuates the
final result to account for self-shadows, which we will de-
tail in the description of shadow computation. ⊗ represents

direction-wise multiplication (SG product). As the BRDF is
represented with SGs, this allows direct editing of appear-
ance in real time.

Compositing. Here we mix the rendering results of the
input NeRF and the virtual object. First, for a pixel whose
camera ray hits the virtual object, we adjust the integration
range t to [min(d, tn),min(d, tf)], where d is the depth of
the object at the current pixel. The idea is to eliminate the
part of the NeRF occluded by the virtual object. Please refer
to Fig. 2 for an illustration. We then perform conventional
NeRF rendering to obtain a color and an opacity map, Ic
and Iα. Next, we blend in the rendering result of the virtual
object (without shadows) Iv as:

IαIc + (1− Iα)Iv. (6)

Shadow computation. We handle two types of shadows
in our pipeline: the shadow from the virtual object to the
NeRF, and the self-shadow of the virtual object.

For the first type of shadows, similar to previous
work [41], we compute an attenuation factor κ, as the ra-
tio of the irradiance value before and after the virtual object
insertion:

κ(x) =

∫
Ω+ Li (ωi;xo)V (ωi;x) (ωi · n) dωi∫

Ω+ Li (ωi;xo) (ωi · n) dωi
. (7)

Here xo is the object center. V is the binary visibility term:
it is 0 if occluded by the virtual object, and 1 otherwise. For
each pixel in Ic, we compute its corresponding 3D location
x from its depth using the same method in Sec. 4.2, and
then attenuate its rendered result by a corresponding κ.

Eq. (7) can be rapidly computed thanks to the SG basis.
For its numerator, we first multiply Li with the cosine term
as a product of SGs, and then compute as follows:∫

Ω

(

M∑
k=1

G(ωi;pk, λk,µk))V (ωi)dωi

≈
M∑
k=1

µkfh(S(pk), λk),

(8)

where fh(θ, λ) is a precomputed table [39] related to the
spherical signed distance (SSD) θ and the sharpness λ of an
SG. For the denominator, it can be quickly evaluated in a
manner similar to Eq. (5).

For adding the self-shadows, we first attenuate each SG
for the incident lighting with a factor γk, and then render
the virtual object. γk is the ratio of the integral of the unob-
structed region to that of the complete upper hemisphere:

γk(x) =
µkfh(S(pk;x), λ)

µkfh(
π
2 , λ)

=
fh(S(pk;x), λ)

fh(
π
2 , λ)

. (9)

Note that here we do not attenuate with κ to avoid comput-
ing the shadows twice.

Table 1. Time in milliseconds (ms) for each module.

NeRF Rendering
Virtual Object Insertion

Lighting SG-updating Rendering Compositing Shadow

40.0 4.0 7.0 1.2 0.8 2.0

5. Results

All experiments are conducted on a workstation with
an Xeon(R) Platinum 8352V CPU, 90GB memory and an
NVIDIA RTX 4090 GPU. Our pipeline achieves a perfor-
mance of 18 frames per second on average at a resolution of
1280×720. Specifically, as shown in Table 1, it takes about
40ms for instant-ngp to render the NeRF. And it takes 15ms
for virtual object insertion, including 4ms for incident light-
ing computation, 7ms for SG updating (except that 84ms is
needed for the first frame), and 4ms for the rendering, com-
positing and shadow casting of the virtual object. The most
time-consuming part is the NeRF rendering. Replacing it
with the state-of-the-art 3D reconstruction techniques, such
as 3DGS [23], is promising to further improve the real-time
performance. The average GPU usage is 55%, which shows
room for future improvement over memory access.

For precomputation, it takes about 25 minutes to esti-
mate the environment lighting from an input NeRF. For a
virtual object, we spend 8 minutes to precompute the SSDF
field, which takes up 9MB. Note that the SSDF field can be
used with any NeRF.

In the following, we describe the data related to
our experiments, including synthetic and captured HDR
NeRFs, in Sec. 5.1. Ablation studies are demonstrated
in Sec. 5.2. Finally, we compare against state-of-the-art
methods in Sec. 5.3.

5.1. Data

We build four synthetic HDR NeRFs by training us-
ing images rendered from multiple views with Blender Cy-
cles [11]. For PLANTS, all light sources can be observed in
the rendered images, and therefore the environment lighting
should be totally black. For the other 3 NeRFs (BOOKS,
DOG and CUPS), there are some light sources that do not
appear in any of the rendered images, which are considered
as the environment lighting.

In addition to synthetic NeRFs, we also construct two
NeRFs by training with captured HDR photographs from
two real scenes (HORSE and SHEEP). We set the camera
to the bracketing mode with the step of 1.5 EV and shoot 9
images with different exposures for each camera pose. Each
HDR image is recovered from 9 LDR images using [13].

To provide the ground-truth for object insertion exper-
iments, we 3D-print several models and uniform sprayed
them with paints to simulate different materials. We apply
Ma et al. [28] to measure the material parameters, includ-
ing roughness and metallic, and use the same parameters for

Background Rendering Composited 𝜅 All effects

P
L

A
N

T
S

B
O

O
K

S
D

O
G

Figure 3. Visualization of intermediate and final object insertion results of the PLANTS, BOOKS and DOG synthetic scenes. From left col-
umn to right, background images, virtual objects rendering results, compositing results with occlusion or translucency effects, κ (Eq. (7)),
object insertion results with all effects.

virtual objects rendering. The 3D printed models are placed
in the real scene, and images are taken around them as the
ground-truth. We use the images without the presence of
the model to train NeRFs, and compare object insertion re-
sults with the images with the physical model in place. The
sizes of virtual objects are adjusted manually to ensure that
it is closed to the ground-truth.

5.2. Ablation studies

We first perform ablation experiments to show the inter-
mediate results of each step described in Sec. 4.4. In Fig. 3,
the virtual object shows all-frequency effects with realistic
reflections. We can see the virtual object through the glass
bottle in the BOOKS scene, which is a challenging task for
traditional AR methods [29]. The shadows computed by
our method also considerably enhanced the visual realism.

Next, we show the impact of our estimated environment
lighting as well as the near-field lighting represented in the
NeRF in Fig. 4. Without the environment lighting which
estimates the sources not covered in the NeRF, the virtual
object appears darker in the BOOKS and DOG scene. More-
over, we compare our method with PhySG [46] and InvRen-
der [48] on environment lighting estimation. These three
methods have a similar estimation framework, and all repre-

sent the environment lighting as 32 SGs in our experiments.
PhySG does not take into account the near-field lighting and
visibility. InvRender roughly models the near-field lighting
by training a MLP to cache ray-tracing results. Our method
more accurately model the near-field lighting (especially
the visibility, cached to texture maps), and sparsely sample
the surface points to reduce memory consumption. In the
PLANTS scene, all light sources are included in the NeRF,
and therefore the ground-truth environment lighting is to-
tally black. PhySG treats the light sources in NeRF as the
environment lighting. The virtual object is brighter than the
ground-truth in the PLANTS scene, while the self-shadow is
too dark in the BOOKS scene. For InvRender, caching near-
filed lighting with MLP by tracing 16 rays at each point is
too rough for complex scene-level NeRFs, which leaves a
lot of ambiguity during optimization. Our method provides
the best results, and the estimation is not affected by the
light sources incorporated in the NeRF.

In addition, we evaluate the impact of the number of
pixels and rays over the estimated environment lighting
in Fig. 5. If we sample less pixels, the estimation will suf-
fer from the ambiguity of albedo and shading. If we trace
less rays at each point, the near-field lighting is less accu-
rate, resulting in a highly noisy estimate. In comparison,

w/o env. light w/ PhySG env. light Ground-truth w/ InvRender env. light w/ Our env. light

P
L

A
N

T
S

B
O

O
K

S
D

O
G

Figure 4. A qualitative comparison of using different environment lighting in PLANTS, BOOKS and DOG synthetic scenes. In the first
column, virtual objects are rendered by only using the NeRF near-field lighting. From the second left column to the fourth column, we
compensate different estimated environment lighting estimated by the method of PhySG [46], InvRender [48] and our proposed method.
The last column is the ground-truth rendered by Blender Cycles. Some details are magnified for better comparison. The environment
lighting is shown by equirectangular projection under the rendered images.

64 pixels per view
32768 rays per point

16 pixels per view
32768 rays per point

256 pixels per view
32768 rays per point

64 pixels per view
2048 rays per point

64 pixels per view
131072 rays per point

Ground-truth

Figure 5. Estimating environment lighting by different sampling strategies. All the results are estimated in DOG. The result of our proposed
method is shown on the second from left, which samples 64 pixels per view and traces 32768 rays at each surface point corresponding to
the pixel. Results estimated by other sampling strategies are shown on the right side of the dashed line.

P
L

A
N

T
S

B
O

O
K

S
D

O
G

Near-field Incident SG fitting Ground-truthEnvironment

Figure 6. Visualization of the lighting at the virtual object center. From left column to right, near-field lighting, environment lighting,
incident lighting, SG fitted incident lighting and the ground-truth lighting rendered by Blender Cycles. The incident lighting is the blend
of the near-field and environment lighting according to the NeRF opacity.

Background Ground-truth(a) (b) (c) (d)

Figure 7. Comparison of shadows generated by using the 16 × 16 × 16 SSDF field that obtains SSD values at far positions by clamping
to the boundary values (a), truncating to positive infinity (b) and approximating from the boundary values (c), and shadows generated by
using the 64× 64× 64 SSDF field that interpolates SSDF at any position (d). The ground-truth is rendered by Blender Cycles.

sampling fewer pixels has a greater impact than sampling
fewer rays. Sampling more pixels and rays usually leads to
slightly better results, but bears the increasing costs of time
and memory.

To validate the our lighting model in Eq. (1), we show
the near-field lighting (from NeRF), estimated environment
lighting, full incident lighting (before and after SG fitting),
and the ground-truth in Fig. 6. Our method generates high-
quality incident lighting close to the ground-truth. After
fitting with SGs, the main light sources are preserved. We
notice that there are some extra floaters (PLANTS scene)
and missing parts (BOOKS scene) in the near-field lighting.
Nevertheless, they do not notably influence the rendering as
the brightness is relatively low. Also, the estimated environ-
ment lighting well compensates for the lighting not covered
by NeRF.

To validate our method for extrapolating SSDF
(Sec. 4.3), we compare in Fig. 7 the shadows generated by
our parameters and using a 64×64×64 SSDF field with an
extended range of −6robj to 6robj, where robj is the radius
of the virtual object bounding sphere, so that the SSDF is in-
terpolated at any pixel in the rendered image. There are no
significant differences between the results computed with
two sets of parameters, while the simple clamping method
generates unsatisfactory results in regions far away from the
virtual object. Compared to the ground-truth rendering re-
sults, our shadows appear slightly darker, due to the approx-
imation of the inner product of the environment lighting and
the visibility term.

PLANTS BOOKS DOG CUPS HORSE

Ba
ck

gr
ou

nd
Li

 e
t a

l.
[2

6]
Zh

an
 e

t a
l.

[4
5]

O
ur

s
Re

fe
re

nc
e

SHEEP

Synthetic scenes Real scenes

Glossy/Occlusion Glossy/Shadows Diffuse/Local light Diffuse/Occlusion Glossy/Translucency Diffuse/Shadows

Figure 8. Comparison with the work of Li et el. [26] and Zhan et al. [45] in both synthetic scenes and real scenes. The materials of virtual
objects and the noteworthy effects are indicated under each column.

5.3. Comparisons

We first compare our approach with two state-of-the-art
methods, Li et al. [26] and Zhan et al. [45]. Both take RGB
images as input and employ neural networks to estimate the
lighting. The former outputs 2D spatially-varying incident
lighting, from a joint optimization of material parameters
and depths. And the latter only outputs one incident light-
ing. For comparison, we first render (for synthetic scenes)
or capture (for real scenes) images of a scene without the
virtual object, and use them as input for both methods. The
estimated lighting are represented as SGs, so that we can
render the virtual object as described in Sec. 4.4 to compare
across different methods. Depth test is performed in [26] to

account for occlusions. Since the method of [45] does not
provide any geometric information, we directly place the
virtual object on top of the background. We do not compare
our shadows with the baseline methods, as both of them
generate shadows on manually specified planes. Instead,
we compare our shadows with the ground-truth.

Fig. 8 shows the comparisons on synthetic and real
scenes. Virtual objects rendered with [26] or [45] can be
easily distinguished from the background. These two meth-
ods are trained with indoor image datasets and are likely
to estimate results with considerable bias. In comparison,
our method is able to robustly estimate the incident lighting.
Our rendering results exhibit realistic reflections and shad-
ows that closely resemble the ground-truth, regardless of the

Ours
50ms

DMRF
4spp, 38s

DMRF
64spp, 611s

Figure 9. Comparison with DMRF [36]. It takes 50ms to render
the frame by our methods while DMRF takes 38s to render a 4spp
frame and 611s to render a 64spp frame. Leaked shadows are
observed with their approach.

material, e.g. diffuse in DOG or glossy in BOOKS. Even for
scenes with complex lighting, such as multiple light sources
in PLANTS and the environment lighting with local lights
in DOG, our method is able to produce reliable results. The
depth map computed by Li et al. is rough, leading to notice-
able cracks or overlaps, e.g., in PLANTS and CUPS. Note
that our method supports the transparency and translucency
represented in the input NeRF (see the plastic cup in HORSE
in Fig. 8 and the glass vase in BOOKS in Fig. 3).

In Fig. 9, we further compare with the concurrent work
of DMRF [36]. There are 3 major differences. First,
based on a path-tracing framework, their performance can-
not reach real time. Second, their approach does not esti-
mate light sources not covered the input NeRF. Finally, the
visibility in the NeRF is ignored, leading to artifacts like
shadow leakage, as shown in Fig. 9.

Moreover, we qualitatively compare against popular AR
frameworks from the industry, including Google Depth
Lab [14], AR Toolbox [3] and Unity AR Foundation [2],
due to the difficulty for precisely controlled experiments.
As the common types of virtual object supported by all
frameworks are limited, we only test a red ball in the
HORSE scene. As shown in Fig. 10, our method produces
more accurate and detailed rendering with soft shadows,
while the counterparts only implement hard shadows on es-
timated planes.

5.4. Limitations

First, as shown in Fig. 11(a), certain local lighting ef-
fects may not be modeled, due to our assumption that all
surface points of the virtual object shares the same incident
lighting. Second, due to the inaccurate depth estimation
in NeRF, there is a small amount of noise in our shadows
in Fig. 11(b). Finally, we consider direct illumination only,
which may lead to artifacts. For example, in Fig. 11(c), the

OursAR Foundation AR Toolbox Depth Lab

Figure 10. Comparison with popular AR frameworks in industry,
including Unity AR Foundation [2], AR Toolbox [3] and Google
Depth Lab [14].

virtual object rendered by our method shows red reflections
from the wood table. However, this is incorrect, as this part
of the wood table is actually occluded by shadows of the
object.

O
ur

s
G

ro
un

d-
tr

ut
h

(a) (b) (c)

Figure 11. Failure cases: (a) shadow missing due to the assump-
tion that all surface points of the virtual object shares the same
incident lighting; (b) noisy shadow caused by inaccurate depth es-
timation; (c) incorrect shading due to only considering the direct
illumination.

6. Conclusion

We propose a real-time method for inserting virtual ob-
jects into a NeRF. Our key contribution is the first frame-
work that fully exploits the lighting and geometry infor-
mation in NeRFs to enable realistic rendering with occlu-
sion and shadowing effects. We outperform state-of-the-
art techniques in terms of quality. Compared with existing
work, combining NeRF with AR has considerable benefits
and may be widely deployed with the popularity of NeRF.
We hope that this paper could inspire further research along
this direction.

References

[1] I. Alhashim and P. Wonka. High quality monocular
depth estimation via transfer learning. arXiv preprint
arXiv:1812.11941, 2018. 2

[2] Unity AR Foundation. Website, 2023. https://unity.
com/unity/features/arfoundation. 10

https://unity.com/unity/features/arfoundation
https://unity.com/unity/features/arfoundation

[3] AR Toolbox. Website, 2023. https://play.google.
com/store/apps/details?id=fr.smarquis.
ar_toolbox. 10

[4] D. Azinovic, T.-M. Li, A. Kaplanyan, and M. Nießner. In-
verse path tracing for joint material and lighting estimation.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 2447–2456, 2019. 2

[5] S. F. Bhat, I. Alhashim, and P. Wonka. Adabins: Depth esti-
mation using adaptive bins. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 4009–4018, 2021. 2

[6] M. Boss, R. Braun, V. Jampani, J. T. Barron, C. Liu, and
H. Lensch. Nerd: Neural reflectance decomposition from
image collections. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 12684–12694,
2021. 2

[7] B. Burley and W. D. A. Studios. Physically-based shading
at disney. In Acm Siggraph, volume 2012, pages 1–7. vol.
2012, 2012. 4

[8] D. A. Calian, J.-F. Lalonde, P. Gotardo, T. Simon,
I. Matthews, and K. Mitchell. From faces to outdoor light
probes. In Computer Graphics Forum, volume 37, pages
51–61. Wiley Online Library, 2018. 2

[9] J. Cao, H. Wang, P. Chemerys, V. Shakhrai, J. Hu, Y. Fu,
D. Makoviichuk, S. Tulyakov, and J. Ren. Real-time neu-
ral light field on mobile devices. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8328–8337, 2023. 1

[10] J.-R. Chang and Y.-S. Chen. Pyramid stereo matching net-
work. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 5410–5418, 2018. 2

[11] B. O. Community. Blender - a 3D modelling and rendering
package. Blender Foundation, Stichting Blender Foundation,
Amsterdam, 2018. 5

[12] P. Debevec. Image-based lighting. In ACM SIGGRAPH 2006
Courses, pages 4–es. 2006. 2

[13] P. E. Debevec and J. Malik. Recovering high dynamic range
radiance maps from photographs. In Proceedings of the
24th Annual Conference on Computer Graphics and Interac-
tive Techniques, page 369–378. ACM Press/Addison-Wesley
Publishing Co., 1997. 5

[14] R. Du, E. Turner, M. Dzitsiuk, L. Prasso, I. Duarte, J. Dour-
garian, J. Afonso, J. Pascoal, J. Gladstone, N. Cruces, et al.
Depthlab: Real-time 3d interaction with depth maps for mo-
bile augmented reality. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technol-
ogy, pages 829–843, 2020. 10

[15] M.-A. Gardner, Y. Hold-Geoffroy, K. Sunkavalli, C. Gagné,
and J.-F. Lalonde. Deep parametric indoor lighting estima-
tion. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 7175–7183, 2019. 2

[16] M.-A. Gardner, K. Sunkavalli, E. Yumer, X. Shen, E. Gam-
baretto, C. Gagné, and J.-F. Lalonde. Learning to predict
indoor illumination from a single image. arXiv preprint
arXiv:1704.00090, 2017. 2

[17] M. Garon, K. Sunkavalli, S. Hadap, N. Carr, and J.-F.
Lalonde. Fast spatially-varying indoor lighting estimation.

In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6908–6917, 2019. 2

[18] C. Godard, O. Mac Aodha, and G. J. Brostow. Unsupervised
monocular depth estimation with left-right consistency. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 270–279, 2017. 2

[19] H. Huang and H. Hua. High-performance integral-imaging-
based light field augmented reality display using freeform
optics. Optics express, 26(13):17578–17590, 2018. 2

[20] K. Iwasaki, W. Furuya, Y. Dobashi, and T. Nishita. Real-
time rendering of dynamic scenes under all-frequency light-
ing using integral spherical gaussian. In Computer Graphics
Forum, volume 31, pages 727–734. Wiley Online Library,
2012. 2

[21] K. Karsch, K. Sunkavalli, S. Hadap, N. Carr, H. Jin, R. Fonte,
M. Sittig, and D. Forsyth. Automatic scene inference for 3d
object compositing. ACM Transactions on Graphics (TOG),
33(3):1–15, 2014. 2

[22] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry,
R. Kennedy, A. Bachrach, and A. Bry. End-to-end learning
of geometry and context for deep stereo regression. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 66–75, 2017. 2

[23] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis.
3d gaussian splatting for real-time radiance field rendering.
ACM Transactions on Graphics (ToG), 42(4):1–14, 2023. 5

[24] E. A. Khan, E. Reinhard, R. W. Fleming, and H. H. Bülthoff.
Image-based material editing. ACM Transactions on Graph-
ics (TOG), 25(3):654–663, 2006. 2

[25] C. LeGendre, W.-C. Ma, G. Fyffe, J. Flynn, L. Charbonnel,
J. Busch, and P. Debevec. Deeplight: Learning illumination
for unconstrained mobile mixed reality. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5918–5928, 2019. 2

[26] Z. Li, M. Shafiei, R. Ramamoorthi, K. Sunkavalli, and
M. Chandraker. Inverse rendering for complex indoor
scenes: Shape, spatially-varying lighting and svbrdf from a
single image. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2475–
2484, 2020. 2, 9

[27] S. Ma, Q. Shen, Q. Hou, Z. Ren, and K. Zhou. Neural com-
positing for real-time augmented reality rendering in low-
frequency lighting environments. Science China Information
Sciences, 64:1–15, 2021. 2

[28] X. Ma, K. Kang, R. Zhu, H. Wu, and K. Zhou. Free-form
scanning of non-planar appearance with neural trace photog-
raphy. ACM Transactions on Graphics (TOG), 40(4):1–13,
2021. 5

[29] M. C. d. F. Macedo and A. L. Apolinario. Occlusion handling
in augmented reality: Past, present and future. IEEE Trans-
actions on Visualization and Computer Graphics, 2021. 6

[30] R. Martin-Brualla, N. Radwan, M. S. Sajjadi, J. T. Barron,
A. Dosovitskiy, and D. Duckworth. Nerf in the wild: Neural
radiance fields for unconstrained photo collections. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7210–7219, 2021. 1

[31] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, and R. Ng. Nerf: Representing scenes as

https://play.google.com/store/apps/details?id=fr.smarquis.ar_toolbox
https://play.google.com/store/apps/details?id=fr.smarquis.ar_toolbox
https://play.google.com/store/apps/details?id=fr.smarquis.ar_toolbox

neural radiance fields for view synthesis. In ECCV, 2020. 1,
2

[32] A. Mittal, A. K. Moorthy, and A. C. Bovik. No-reference
image quality assessment in the spatial domain. IEEE Trans-
actions on image processing, 21(12):4695–4708, 2012. 3

[33] T. Müller, A. Evans, C. Schied, and A. Keller. Instant neu-
ral graphics primitives with a multiresolution hash encoding.
ACM Transactions on Graphics (ToG), 41(4):1–15, 2022. 2

[34] S. Peng, J. Dong, Q. Wang, S. Zhang, Q. Shuai, X. Zhou,
and H. Bao. Animatable neural radiance fields for modeling
dynamic human bodies. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 14314–
14323, 2021. 1

[35] A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-
Noguer. D-nerf: Neural radiance fields for dynamic scenes.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10318–10327, 2021.
1

[36] Y.-L. Qiao, A. Gao, Y. Xu, Y. Feng, J.-B. Huang, and M. C.
Lin. Dynamic mesh-aware radiance fields. arXiv preprint
arXiv:2309.04581, 2023. 10

[37] P. P. Srinivasan, B. Deng, X. Zhang, M. Tancik, B. Milden-
hall, and J. T. Barron. Nerv: Neural reflectance and visibility
fields for relighting and view synthesis. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7495–7504, 2021. 2

[38] A. Tewari, M. Zollhofer, H. Kim, P. Garrido, F. Bernard,
P. Perez, and C. Theobalt. Mofa: Model-based deep con-
volutional face autoencoder for unsupervised monocular re-
construction. In Proceedings of the IEEE international con-
ference on computer vision workshops, pages 1274–1283,
2017. 2

[39] J. Wang, P. Ren, M. Gong, J. Snyder, and B. Guo.
All-frequency rendering of dynamic, spatially-varying re-
flectance. In ACM SIGGRAPH Asia 2009 Papers, New York,
NY, USA, 2009. Association for Computing Machinery. 1,
2, 3, 4, 5

[40] K. Wang and S. Shen. Mvdepthnet: Real-time multiview
depth estimation neural network. In 2018 International con-
ference on 3d vision (3DV), pages 248–257. IEEE, 2018. 2

[41] Z. Wang, W. Chen, D. Acuna, J. Kautz, and S. Fidler. Neural
light field estimation for street scenes with differentiable vir-
tual object insertion. In European Conference on Computer
Vision, pages 380–397. Springer, 2022. 5

[42] J. Watson, M. Sayed, Z. Qureshi, G. J. Brostow, S. Vicente,
O. Mac Aodha, and M. Firman. Virtual occlusions through
implicit depth. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9053–
9064, 2023. 2

[43] B. Yang, Y. Zhang, Y. Xu, Y. Li, H. Zhou, H. Bao, G. Zhang,
and Z. Cui. Learning object-compositional neural radiance
field for editable scene rendering. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 13779–13788, 2021. 1

[44] Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan. Mvsnet: Depth
inference for unstructured multi-view stereo. In Proceed-
ings of the European conference on computer vision (ECCV),
pages 767–783, 2018. 2

[45] F. Zhan, C. Zhang, Y. Yu, Y. Chang, S. Lu, F. Ma, and X. Xie.
Emlight: Lighting estimation via spherical distribution ap-
proximation. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 35, pages 3287–3295, 2021. 2,
9

[46] K. Zhang, F. Luan, Q. Wang, K. Bala, and N. Snavely. Physg:
Inverse rendering with spherical gaussians for physics-based
material editing and relighting. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5453–5462, 2021. 2, 4, 6, 7

[47] X. Zhang, P. P. Srinivasan, B. Deng, P. Debevec, W. T. Free-
man, and J. T. Barron. Nerfactor: Neural factorization of
shape and reflectance under an unknown illumination. ACM
Transactions on Graphics (TOG), 40(6):1–18, 2021. 2, 3

[48] Y. Zhang, J. Sun, X. He, H. Fu, R. Jia, and X. Zhou. Model-
ing indirect illumination for inverse rendering. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 18643–18652, 2022. 2, 3, 6, 7

[49] K. Zhou, Y. Hu, S. Lin, B. Guo, and H.-Y. Shum. Pre-
computed shadow fields for dynamic scenes. In ACM SIG-
GRAPH 2005 Papers, page 1196–1201, New York, NY,
USA, 2005. Association for Computing Machinery. 2, 3,
4

