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Fig.1. We conducted generalization tests on real scenes from the DTU dataset, without using real depth values. Our model demonstrated
superior visual quality compared to existing generalization models, MVSNeRF[6] and GeoNeRF[17].

Abstract Traditional neural radiance fields for rendering novel views require intensive input images and pre-scene opti-

mization, which limits their practical applications. We propose a generalization method to infer scenes from input images and

perform high-quality rendering without pre-scene optimization named SG-NeRF. Firstly, we construct an improved multi-

view stereo structure based on convolutional attention and multi-level fusion mechanism to obtain the geometric features

and appearance features of the scene from the sparse input images, and then these features are aggregated by multi-head

attention as the input of the neural radiance field. This strategy of utilizing neural radiance fields to decode scene features

instead of mapping positions and orientations enables our method to perform cross-scene training as well as inference, thus

enabling neural radiance fields to generalize for novel view synthesis on unseen scenes. We tested the generalization ability

on DTU real unseen scenes, and our PSNR improved by 3.14 compared with the baseline method under the same input

conditions. In addition, if the scene has dense input views available, the average PSNR can be improved by 1.04 through

further refinement training in a short time, and a higher quality rendering effect can be obtained.
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1 Introduction

Synthesizing novel views from given images has been

a hot research topic in the fields of computer vision

and computer graphics. This technology is also fun-

damental for achieving realistic AR/VR experiences.

Recently, neural radiance field (NeRF)[26] techniques

have gained significant attention due to their impres-

sive rendering quality. NeRF and its subsequent works

can achieve photo-realistic rendering of novel views, but

they require a large number of images of a single scene

as input and involve lengthy optimization processes to

obtain accurate radiance fields, which limits their prac-

tical applicability.

Recent advancements have addressed these limita-

tions. [39, 32, 20] propose methods that extract 2D fea-

tures as additional inputs to the radiance field, reducing
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the requirement for dense input views. DS-NeRF[10]

introduces sparse depth information as additional su-

pervision, improving rendering quality and speeding up

the rendering process with fewer training views. Diet-

NeRF[15] introduces semantic consistency loss as an

auxiliary task, enabling training with fewer input views

for a single scene. MVSNeRF[6] combines multi-view

stereo (MVS) geometry with neural radiance fields, en-

hancing the generalization of the radiance field without

the need for per-scene training. However, MVSNeRF

cannot handle scene details and occlusions. MVS usu-

ally uses convolutional neural networks to extract the

information and correlation between multiple views to

estimate the depth of the scene. Benefiting from the

inductive bias mechanism of convolutional neural net-

works, MVS can be trained and inferred across scenes

and can accurately understand the 3D structure of the

scene. MVS’ understanding of scene 3D structure is

input into NeRF as a priori, which can overcome the

disadvantage that NeRF needs to be trained scene by

scene, and enable NeRF to complete the task of new

view synthesis after one forward propagation in a fully

trained pipeline. MVSNeRF[6] has demonstrated the

effectiveness of this idea. GeoNeRF[17] improves upon

MVSNeRF but relies on supervised training with pro-

cessed ground truth depth information from the DTU

dataset[16] to enhance the performance of the geomet-

ric reasoning module. We use GeoNeRF as the baseline

for comparison and make several improvements to it.

Specifically, we still adopt the idea of combining

multi-view geometry with neural radiance field, so that

neural radiance field can be trained and inferred across

scenes. The difference is that we improve the module

of constructing cost volume in traditional MVS tech-

nology, and expand the perceptual interaction between

multi-level cost volume by means of multi-level cost

volume fusion. More valuable spatial feature informa-

tion is provided to the neural radiance field. In addi-

tion, we propose a deep self-supervised loss, which uses

the depth information of MVS inference to distort the

source view, reducing the dependence of the generaliza-

tion model on the true depth information. Instead of

the coarse-fine sampling strategy of original NeRF, we

use a mixture of Gaussian-uniform sampling to directly

utilize the depth information inferred by MVS to sam-

ple as many points near the object surface as possible,

simplifying the neural radiance field inference rendering

process and requiring no additional real depth informa-

tion.

Our main contributions are as follows:

• Multi-level cost volume fusion module. This fu-

sion module enhances the interaction between

cost volume contexts and achieves high-quality

geometry perception.

• Feature information decoding module. Decoding

features instead of mapping location and orienta-

tion enhances the understanding of the scene and

the generalization ability of the neural network.

• The structure of scene geometry reasoning and

feature decoding enable our model learn to un-

derstand the scene from the source view, enable

the model to train and reason across scenes.

2 Related Work

2.1 Multi-View Stereo.

Multi-view stereo is a classic problem in computer

vision, aiming to recover the dense geometric represen-

tation of a scene given multiple views with overlapping

regions. Traditional methods [9, 12, 19, 27] have made

extensive exploration in solving the multi-view stereo

problem. Recent approaches [19, 27, 37] have intro-

duced deep learning techniques to address the MVS
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problem. MVSNet[37] builds a cost volume on the scan-

ning planes of the source views and applies 3D con-

volutional neural networks for post-processing to ob-

tain the depth information of the scene. This approach 

significantly improves the quality of 3D reconstruction 

compared to traditional methods. However, the ma-

jor limitation of this approach is the requirement for a 

large amount of memory space. R-MVSNet[38] is an 

improvement over MVSNet by changing the process of 

regularizing the cost volume from simultaneous regular-

ization at multiple depths to sequential regularization 

at individual depths, leveraging the output of the previ-

ous depth to reduce memory consumption and enhance 

model scalability. Some methods [7, 13, 36] introduce 

a cascaded architecture that progressively refines the 

constructed cost volume, reducing memory consump-

tion and obtaining depths at different s cales without 

sacrificing a ccuracy. We a lso u tilize s uch a  cascaded 

architecture, where the initial depth interval of the cost 

volume is related to the predicted depths from the pre-

vious level, enhancing the interaction between different 

levels of cost volumes.

2.2 Self-attention

Self-attention is a specific implementation of the at-

tention mechanism, introduced by[42]. Fundamentally, 

self-attention remains focused on addressing the issue of 

varying points of interest in the input when predicting 

outputs at different positions in sequence p roblems. It 

represents one way to implement the attention mecha-

nism. Initially, the attention mechanism was employed 

to tackle the issue of polysemy in machine translation. 

In a given sentence, the words at different positions are 

not entirely independent; they encompass certain con-

textual information. The incorporation of an attention 

layer associates the information of elements at different 

positions, thereby facilitating information interaction.

In the field of computer vision, the self-attention

mechanism is frequently applied in image segmentation

to enhance image understanding and processing capa-

bilities [43, 44, 45]. It pays simultaneous attention to

both local and global information when processing im-

ages. For a set of images, just like words in a sentence,

there is an abundance of contextual information be-

tween them. This contextual information provides a

priori conditions for the accurate synthesis of new per-

spectives. However, the weight of the information pro-

vided by different perspectives for the same position is

not entirely the same. The self-attention mechanism

offers a theoretical basis for calculating these weights.

We utilize the self-attention mechanism to calculate

the weight information that neighboring perspectives

contribute to a new perspective, achieving high-quality

view synthesis. The effectiveness of this mechanism has

been confirmed by works such as [6, 17].

2.3 New View synthesis.

In previous works, various methods have been ex-

plored for view synthesis, including light field-based ap-

proaches [18, 31, 5], image-based rendering techniques

[3, 4, 29], and deep learning-based methods [41, 8, 24,

30]. Image-based methods typically learn a blending

weight based on ray-space proximity or approximate

geometry to perform weighted blending of pixel colors

from the source views to generate the colors of the tar-

get view. Their synthesis quality relies on the image

quality of the source views and is limited by occlu-

sions. Synthesizing radiance fields on meshes [14] or

point clouds [1, 23] has the advantage of synthesizing

new views using a small set of reference views, but they

are often limited by the quality of 3D reconstruction.

In the case of non-Lambertian surfaces, the colors of

the same point can vary across different views, and this

multi-view inconsistency often leads to failure in 3D re-
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construction on these surfaces.

Our approach combines traditional MVS techniques

with neural rendering techniques by taking spatial fea-

tures corresponding to sampled points as prior input

and decoding colors and densities from scene features

corresponding to arbitrary 3D positions. We simulate

continuous radiance fields using ray projection tech-

niques and obtain the final pixel colors using volume

rendering techniques, enabling realistic view synthesis.

2.4 Neural Scene Representations.

Recently, Ben et al. proposed the use of neural net-

works to encode scenes as a 5D neural radiance field

(NeRF) [26]. NeRF optimizes this neural radiance field

to render realistic novel views of a fixed scene. Subse-

quent works [2, 11, 21] have improved upon NeRF but

still require hours or days of optimization per scene.

GRF [32] directly takes 2D feature representations of

sampled points and ray directions as input, replacing

the 3D coordinates in the 5D neural radiance field. Pix-

elNeRF [39] introduced the use of convolutional layers

to process the input images and modify the NeRF struc-

ture. It incorporates image features as additional in-

puts, similar to residual connections, allowing the net-

work to be trained across scenes and synthesize new

views from a sparse set of images (one or a few). IBR-

Net [34] proposed a generic interpolation function that

aggregates density features of sampled points on the

same ray using transformer modules. It requires the

input of source view colors and directions and its syn-

thesis quality is limited by the quality of the source

views. GNT [33] heavily relies on attention mechanisms

to fuse multi-view features and directly predicts the

pixel colors of the reference view without volume ren-

dering. GNT [33] uses attention mechanisms to achieve

a ray-based learnable scene-adaptive rendering, elimi-

nating the need for per-scene optimization. We believe

that the generalization capability of the radiance field

mainly stems from the model’s inference of the scene.

Specifically, the rendering of new views, without per-

scene optimization, depends on prior input obtained

from the source views, including 3D spatial features

and global 2D features. To enhance the model’s infer-

ence capability, we supervise the geometric reasoning

module using the inferred depth and the final rendered

depth as pseudo-ground truth values, aiming to con-

struct a more accurate geometric neural field.

3 Method

We train SG-NeRF across scenes and divide the ren-

dering of scenes into two stages.The first stage builds

the geometric reasoning module, and the second stage

performs scene rendering.Specifically, we first process

the 2D features in the channel and spatial dimensions,

then use these processed 2D features to construct the

cost volume, and then fuse the cost volume as the 3D

prior information of the reference view. We describe the

geometric reasoning module in detail in Section 3.1. In

the second phase, as the rendering phase, we use the

NeRF network to build a decoding module that uses

the 3D features of the first phase as an additional prior

guide to predict the density and color information of the

spatial sampling points. At the same time, we use the

rough depth information predicted in the first stage for

fine sampling, avoiding the additional time consump-

tion caused by NeRF hierarchical sampling. We de-

scribe this sampling method in 3.2.1 and our decoding

module in 3.2.2. The overall flow chart is shown in

Fig.2.

3.1 Geometric reasoning

3.1.1 Building Cost Volumes

Given N adjacent source images {Ii}Ni=1 ∈ R3×H×W,

we first extract multi-level feature information from the
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Fig.2. The entire inference pipeline can be summarized as follows: For the target reference view rendering, we first select N neighboring
views based on camera parameters and input them into a geometric reasoning model as source views. A U-Net with convolutional
attention modules is employed to extract multi-level 2D features from these source views, which are used for constructing and fusing
multi-level cost volumes. Next, at level l, the cost volumes of the source views are regularized to obtain predicted depth maps and 3D
features F l

i for each source view. These predicted depth maps are used to guide the construction of the next-level cost volumes and ray
sampling. Finally, the multi-level 3D features corresponding to the spatial sampling points, along with the full-resolution 2D features,
are fed into the decoding module. Through a multi-head attention mechanism, the feature information from different source views is
aggregated and separately passed to the color decoding network and density decoding network for decoding.

images to construct a cost volume for the source view

[17]. In MVS [37], this multi-scale structure is more

helpful for inferring scene depth information, and pre-

vious work [21, 32] has demonstrated the effectiveness

of multi-scale structures. For the extracted 2D scene

features, we use a convolutional block attention mod-

ule to enhance the scene-related features and suppress

irrelevant features, reducing the loss of detail in small-

scale feature information. Specifically, we improve the

model’s representational capacity by adaptively adjust-

ing the weights of different channel and spatial position

feature maps.

First, we process the channel dimension of the fea-

ture maps using a channel attention module, selectively

enhancing the representation ability of each channel.

The specific implementation can be divided into the

following steps: We begin by performing global max

pooling and global average pooling on the feature map

channels to obtain two channel value pooling weights

WC1 and WC2 , respectively. Then, we feed these two

weights into a shared neural network, obtaining the

weight coefficients WC for the channel dimension, per-

forming dot product operation with the original feature

map to obtain channel-weighted feature map f l
c.

WC = MLP(WC1
,WC2

)

f l
c = WC ⊗ f l

i

(1)

After obtaining the channel-weighted feature f l
c, we

also obtain two spatial pooling weights WS1 and WS2

by performing global max pooling and global average

pooling on the spatial dimension. We concatenate the

two weights obtaining the weight coefficients WS for

the spatial dimension. We use these two weights to

process the channel-weighted feature map, obtaining

multi-scale features f̂ l
i based on convolutional atten-

tion.

WS = CNN(WS1 ,WS2)

f̂ l
i = WS ⊗ f l

c

(2)

This attention-based multi-scale feature approach helps

to aggregate more valuable feature information into the

cost volumes, thereby enabling the geometric neural

field to provide more valuable local spatial features.

We also adopted the cascaded cost volume construc-

tion proposed by CastMVSNet. By using the camera
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parameters [K,R, t], we can find the K nearest views to

view Ii among the N source views and perform homog-

raphy warping to obtain the multi-level cost volume Vl
i

based on group correlation for the source view Ii.

Hk(z) = Kk ·
(
Rk ·RT

i +
(ti − tk) · nT

i

z

)
·K−1

i (3)

Vl
i(u, v, z) = G(f̂ l

k · (Hk(z) · [u, v, 1]T )Kk (4)

In the equation, Hk(z) represents the homography

matrix that warps the k-th image to the reference view

Ii. (u, v, z) represents the spatial coordinates of a point

in 3D space. G(·) computes the group correlation

among the K images.

3.1.2 Geometric Neural Field

This group-based cost volume encodes the appear-

ance of the scene from different input viewpoints, cap-

turing the variations in appearance caused by geometry

and viewpoint changes. During the construction of the

scene cost volume, the connections between different-

level cost volumes are established based on the rela-

tionships between the feature maps extracted by the

U-net at different levels. To strengthen the interaction

between cost volumes at different levels, we propose a

cost volume fusion module that integrates the current

cost volume with the cost volume from the previous

level. The small-scale cost volume is composed of the

scene features with large receptive field, which often

contains more abstract spatial information of the scene,

but it is easy to ignore some details of the scene.Based

on this reason, we adopt a method similar to UNet to

fuse large-scale cost volume with small-scale cost vol-

ume, and enhance the perception ability of small-scale

cost volume to scene details. Specifically, we first per-

form trilinear interpolation on the cost volume from the

previous level to match the width, height, and depth di-

mensions of the current level’s cost volume. Then, we

use a convolutional layer to adjust the channel dimen-

sions to match the current level’s cost volume, ensuring

consistency in size. Finally, the cost volumes from the

previous level and the current level are concatenated

and fused. This cost volume fusion module is illustrated

in Fig.3.

UpSample

+

3D CNNCost Volumes

Depth Map

3D Features

Fig.3. Before regularization, the cost volume Cl is first concate-
nated and fused with the upsampled cost volume C′

l from the
previous level. Afterward, regularization is performed to obtain
the predicted depth map and scene 3D features. Additionally,
the cost volume Cl is upsampled to generate C′

l+1, which serves
as the input for regularization in the next level.

In the cost volume regularization stage, the tradi-

tional MVS method directly predicts the depth infor-

mation of the scene and only interprets the scene ge-

ometry. Our aim is to perceive scene geometry versus

appearance across scenes, so different from traditional

MVS is to generate meaningful geometric neural fields

F l
i while inferential scene depth. The geometric neu-

ral field F l
i is input into the subsequent decoding net-

work for decoding as the geometric understanding of

the scene. The inferential scene depth is used for the

sampling prior of subsequent ray-casting steps of neural

radiation fields. Our geometric reasoning module does

not use the real depth information to supervise, in order

to constrain it, we use the predicted depth and camera

parameters to distort K neighboring views of the source

view Ii, and calculate the photometric consistency loss

between the source view and the distorted neighboring

view.
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3.2 Feature Decoding

3.2.1 Gaussian-Uniform mixture sampling

After constructing the geometric neural field, we use

ray casting techniques to render new views. We simu-

late Nr rays based on the camera parameters of the

reference view I0 and sample discrete points along the

rays for rendering the final ray colors. To enhance the

correlation between the sampling point positions and

the spatial depth, we use inverse warp to distort the

predicted depth maps from the source views to the ref-

erence view. By performing this inverse warp, smaller

distorted depth values are overlaid on top of larger dis-

torted depth values, resulting in a fused depth map for

the reference view. This fused depth map serves as the

coarse predicted depth D̂, providing a prior guidance

for the fine sampling of the point positions.

First, we uniformly sample Sc points along each

camera ray to cover the entire depth range.

tk ∼ U
[
tn +

k − 1

K
(tf − tn) , tn +

k

K
(tf − tn)

]
(5)

In the equation, tf and tn represent the far and near

boundaries of the scene, tk represents the sampling in-

terval for ray casting.

Subsequently, guided by the coarse predicted depth,

we sample candidate points following a Gaussian distri-

bution. These candidate points are sampled in a way

that takes into account the estimated depth informa-

tion, allowing us to capture the variations in scene ge-

ometry more effectively. Assuming the pixel coordinate

is denoted as P = (u, v) and the predicted ray depth is

denoted as zp = D̂(u, v), sample Sf fine sample points

using the following formula:

tk ∼ N (zp, s
2
p)

sp =
min(|zp − tf |, |zp − tn|)

3

(6)

zp and sp are the mean and standard deviation of the

proposed normal distribution, respectively. By using

these values, we can optimize geometric features more

effectively by sampling more candidate points near the

object surface. This differentiable sampling method

also contributes to better convergence of the geomet-

ric neural field.

3.2.2 Aggregation feature and Decoding

Using the camera parameters, each point X on the

ray is projected onto each source view and bilinear in-

terpolation is performed to obtain corresponding multi-

level 3D features. These multi-level features are then

merged to form the final geometric field feature Fi. As

for the scene’s 2D features, only the full-size 2D feature

with l = 0 is retained and subjected to bilinear interpo-

lation. This full-size 2D feature encompasses a global

understanding of the scene and also provides a mask to

determine if the sampling point is projected outside the

source view. Finally, these aggregated feature values F̂i

serve as the input to the decoding module.

F̂i = [{F l
i }2l=0, {f l

i}l=0] (7)

Now that the vector F̂i contains all the necessary

data of the scene, it can be used to learn the scene

appearance and predict the density of spatial sampling

points. NeRF employs a fully connected neural network

(MLP) to map the coordinate vector and direction vec-

tor of a spatial point to its corresponding color and

density, resulting in overfitting to the specific scene.

This overfitting restricts NeRF’s ability to train and

render across different scenes. In contrast, SG-NeRF

constructs the geometric neural field of the scene dur-

ing the scene feature inference stage, using the bias-

inductive power of convolutional neural networks for

cross-scene training. After obtaining the scene feature

vector F̂i, we first compute the mean and variance of

the full-sized 2D features as the view-independent to-

ken. Contains the 3D features and 2D features of the
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source view, serves as the view-dependent tokens. Since

the contribution of different source views to the new

view is not the same, we use the multi-head attention

mechanism proposed in Transformer to aggregate the

tokens from different views and obtain the attention-

weighted feature from different views. The effectiveness

of this mechanism has been demonstrated by [17]. Once

the scene feature vector is obtained, two separate fea-

ture decoding networks (MLPs) are used to decode the

color and density of the spatial sampling points. The

color decoding network takes the view-dependent vec-

tor as input, while the density decoding network takes

the global view-independent vector token as input.

cn,σn = MLP(MHA((mean(f0
i ), var(f

0
i ))

N
i=1, F̂i),△d)

(8)

Note that to enhance the mapping ability of the de-

coding network, we combine the relative direction vec-

tors of the sampling point △d as residual items, and

the encoding method of the direction vector is consis-

tent with that in NeRF [26]. After decoding the density

and color of the space sampling point, we use tradi-

tional volume rendering techniques [22] to render the

color and depth values of the ray.

ĉ =
S∑

n=1

exp

(
−

n−1∑
k=1

σk

)
(1− exp (−σn)) cn (9)

The formula for rendering the color is slightly mod-

ified to obtain the depth value of the ray.

d̂ =
S∑

n=1

exp

(
−

n−1∑
k=1

σk

)
(1− exp (−σn)) zn (10)

3.3 Loss Function

For the color loss, we follow the same approach as

the original NeRF. We calculate the mean squared er-

ror to measure the difference between the rendered color

and the true pixel color.

Lc =
1

|R|
∑
r∈R

∥ĉ(r)− cgt(r)∥2 (11)

Using only the final rendered color loss for super-

vision is insufficient to constrain the entire pipeline of

geometric reasoning. Therefore, we propose the photo-

metric consistency loss of the self-supervised module as

well as the deep inference loss to supervise the geomet-

ric inference module. Specifically, during the geometric

neural field inference stage, in addition to obtaining the

scene’s 3D features, we also obtain the inferred depth

map of the scene. We use this depth map to perform

an inverse warp of the neighboring views of the source

view. This process generates the warped source view

and a binary mask, M, which masks out invalid pixels

outside the source view. The photometric consistency

loss is then calculated by comparing the differences be-

tween the warped view and the real source view:

LPC =
K∑
j=1

1

∥Mj∥i

(∥∥∥(Îji − Ii)⊙Mj

∥∥∥
2
+∥∥∥(∇Îji −∇Ii)⊙Mj

∥∥∥
2

) (12)

In the equations, the symbol ∇ represents the

pixel-wise gradient, and ⊙ represents the pixel-wise

multiplication. This loss measures the consistency

of pixel intensities between the warped and real

views.Additionally, we utilize the fused depth from the

sampling stage of the reference view, which determines

the efficiency of our fine sampling. To enhance the

consistency between the distorted source view and the

reference view in terms of depth, we use the rendered

depth as the pseudo-real depth value for the reference

view and warp this depth value to each source view. We

minimize the difference between the predicted depth in

the source view and the pseudo-depth value in the op-
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Table 1. We tested SG-NeRF and other generalization models on the unseen scenes from the DTU[16], LLFF[25], and Synthetic
datasets[26]. We used three metrics for qualitative comparison: PSNR (higher is better), SSIM (higher is better), and LPIPS (lower is
better). Bold indicates the best results, and underlining represents the second best results.

Method Settings
Real Data (DTU / LLFF) Synthetic Data

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
pixelNeRF[39]

No per-scene Optimization

19.31/11.16 0.789/0.486 0.382/0.671 7.39 0.658 0.411

IBRNet [34] 20.01/23.38 0.803/0.789 0.347/0.229 25.11 0.902 0.108

MVSNeRF[6] 20.10/20.30 0.812/0.726 0.338/0.317 23.62 0.897 0.176

GeoNeRF[17] 21.77/25.00 0.847/0.823 0.217/0.183 28.14 0.936 0.090

Ours 24.91/25.21 0.891/0.836 0.195/0.173 27.79 0.926 0.119

NeRF[21]

Per-scene Optimization

27.01/25.97 0.901/0.870 0.263/0.236 30.63 0.962 0.093

MVSNeRF[6] 21.97/25.45 0.847/0.877 0.226/0.192 27.07 0.931 0.168

GeoNeRF[17] 23.78/25.81 0.897/0.841 0.176/0.173 28.94 0.941 0.077

Ours 25.80/25.85 0.898/0.853 0.188/0.156 28.91 0.943 0.070

timization process.

LDC = smoothL1
(D̂(r)− z(r)) (13)

Here, D̂(r) represents the depth value obtained from

volume rendering, and z(r) represents the depth map

from the convolutional operation on the cost volume.

The final loss formulation can be represented as follows:

L = Lc + λpc

N∑
i=1

LPC/N + λdc × LDC (14)

λpc and λdc are weighting factors that balance the in-

fluence of each loss term in the overall optimization

process.

4 Experiment

Datasets.We trained our model on real forward-

facing datasets from LLFF[25], IBRNet[34], and the

DTU dataset[16]. The camera parameters for the

real forward-facing scenes were obtained from the

COLMAP[28] . In total, there were 5689 images used

for training, which came from 102 indoor and outdoor

forward-facing scenes (35 scenes from LLFF and 67

scenes from IBRNet), as well as 88 real DTU scenes.

Unlike GeoNeRF, we did not utilize real depth data

from DTU for training. Instead, we relied solely on

RGB images for self-supervision.We conducted testing

on a subset of the LLFF dataset, which consists of 8

real-world forward-facing scenes, as well as 8 synthetic

scenes. Additionally, we performed testing on 15 real

scenes from the DTU dataset. We also conducted fine-

tuning and testing on these datasets to further improve

the performance of our model.

During training, we randomly selected one image as

the reference view and simulated partial rays based on

its camera parameters. To conserve memory, we resized

the resolution of each image to 640× 480.

Implementation Details.We trained SG-NeRF for 40

epochs, where each epoch involved iterating through all

training views. During training, we randomly selected

one image from the training dataset as the reference

view. From the reference view, we emitted 512 rays and

sampled 128 points along each ray, including 96 coarse

samples and 32 fine samples. We trained our code on a

single 3090ti GPU. The initial training for cross-scene

initialization took approximately 4 days. Once train-

ing was completed, there was no need to train for each

scene separately. A single forward pass was sufficient

to synthesize the reference view from the source views.

For each epoch, we used the Adam optimizer with

an initial learning rate of 5e-4. We employed the Re-

duceLROnPlateau learning rate strategy, dynamically
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Room

Horns

Scan21

Ground Truth MVSNeRF GeoNeRF Ours

Fig.4. We test the generalization synthesis effect of our model on LLFF (Room, Horns) and DTU (scan21 ) datasets. When we
performed the generalization test on the DTU dataset, we did not utilize the processed depth information in the DTU dataset to verify
the generalization ability of our model under the low-information condition. Compared with other generalization models, our model
performs better in detail and alleviates the artifacts in weak texture regions.

adjusting the learning rate based on the average PSNR

obtained from each epoch.

4.1 Experimental Results

To evaluate the generalization ability of our model,

we compared it with the original NeRF and other well-

known open-source generalized NeRF models: Pix-

elNeRF[39], IBRNet[34], MVSNeRF[6], and GeoN-

eRF[17]. In the generalization capability tests, we pri-

marily use RGB images as the original input, without

the need to include the corresponding depth informa-

tion of the scene. This approach is based on our ob-
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servation that the purpose of introducing Multi-View 

Stereo (MVS) technology is to enable the network to 

infer the 3D information of the scene. Using depth in-

formation as an input undermines the effectiveness of 

this module and limits the practical application of the 

model. The original experimental results of GeoNeRF, 

which exhibited performance jumps on both synthetic 

datasets and the DTU dataset (where depth informa-

tion was inputted), highlight this issue. Conversely, by 

integrating the depth information predicted from source 

views as supplementary input for the reference view, 

we have demonstrated that our module functions effec-

tively even without depth inputs. As shown in Table 1., 

we tested these models on an unseen test dataset and 

quantitatively compared them based on PSNR, SSIM 

[35], and LPIPS[40] metrics. The results indicate that 

our model outperforms the others in terms of perfor-

mance. When tested on the DTU dataset without uti-

lizing real depth information, our model performs the 

best, demonstrating the effectiveness o f t he geometric 

neural field. F ig.1. and F ig.4. showcases the rendering 

results in unseen scenes, where our model better pre-

serves scene details and exhibits fewer artifacts com-

pared to others.

In order to test the ability of our generalization 

model to synthesize novel views when dense views are 

available, we refine t he t raining o n a  s pecific scene 

from the NeRF synthetic dataset and compare it with 

the original NeRF. Our results show that our method 

achieves comparable results to the original NeRF in a 

short amount of time with refined t raining. Compared 

with other generalization models, our model shows the 

best performance after refined training, second only to 

the original NeRF with full training. Figu.5. shows the 

optimized rendering results of NeRF for each scene and 

the results of SG-NeRF’s refined training.

Ground Truth NeRF Ours

Fig.5. We showcased the synthesis results of our model on new
views after short fine-tuning, achieving performance comparable
to the original NeRF model.

4.2 Ablation Study

Fig.5. shows the synthesis results in our general-

ization model retained for more details on the scene,

proves that we improve the effectiveness of the geom-

etry of neural field. To prove the validity of the other

modules in the model, we conducted an ablation study

of our generalized model on the LLFF dataset.Table 2.

shows our ablation results, which include: (a) no self-

supervised loss is used to constrain the geometric neu-

ral field, (b) only the points on the line are uniformly

sampled, (c) the attention mechanism of the decoding

module is removed.

It can be seen from the results in the table that

the model can show the best effect when the improved

module is fully used.(a) When self-supervised loss is

not used, the geometric inference module lacks con-

straints on spatial geometry at the beginning of the

process, which causes our convergence process to slow

down further and affects our final synthesis quality.It

can be observed from Fig.6. that the predicted depth

without self-supervised depth loss is prone to blur, de-

tail loss and other problems. (b) When we do not use

Gaussian uniform mixture sampling, we do the equiv-

alent of just performing the coarse sampling phase of
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NeRF without sampling more points on the object sur-

face, which causes the resultant new view to lose some

detail. (c) Remove the attention mechanism, which has

the biggest impact on the model.The lack of attention

mechanism causes all source views to provide equiva-

lent features, whereas for different new perspectives, the

source view with the closest perspective should provide

more weighted features. In Fig.7., we show the results

of the new view synthesis after removing the attention

mechanism, and the overall quality degradation can be

clearly observed, including large deviations in color in-

formation and false artifacts.

Table 2. Ablation study of the key components of SG-NeRF.

The evaluation is performed on the real forward-facing LLFF

Settings
LLFF Data

PSNR ↑ SSIM ↑ LPIPS ↓

a.No self-supervised loss 24.33 0.821 0.186

b.No mixture sampling 24.84 0.826 0.184

c.No attention mechanism 17.70 0.620 0.375

d.Full SG-NeRF 25.21 0.836 0.173

Table 3. Quantitative analysis of different numbers of source

views on LLFF dataset.

Number of source views PSNR SSIM LPIPS

4 20.92 0.786 0.205

5 23.52 0.818 0.176

6 25.21 0.836 0.173

Table 4. Quantitative analysis of skipping the nearest K

neighboring views on LLFF dataset.

K 0 2 3 4

PSNR 25.21 23.48 23.27 22.85

SSIM 0.836 0.792 0.782 0.770

LPIPS 0.173 0.218 0.229 0.240

Quantitative analysis of skipping the nearest K neighboring
views on LLFF dataset.

G.T W/O W/

Fig.6. New view synthesis results after removing depth loss.

G.T W/O W/

Fig.7. New view synthesis results after removing the attention
mechanism. A significant mass loss can be observed.

4.3 The Influence of Source View Count

We investigated the impact of the number and qual-

ity of source views on our model to analyze its robust-

ness to source views. As shown in Table 3. , we evalu-

ated the influence of different numbers of source views

on our model. The results demonstrate that even with

a small number of source views, our model can still

synthesize realistic new viewpoint images.

Table 4. showcases the robustness of our model

when there is a significant viewpoint difference between

the source views and the reference view. We discarded

the K nearest neighboring views to the reference view

and used the remaining neighboring views as source

views for rendering. As the viewpoint difference be-

tween the source views and the reference view increases,

the effective information provided by the source views
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decreases. In this scenario, our model does not exhibit 

a significant performance drop.

5 Conclusion

We introduce SG-NeRF, a few-view novel view syn-

thesis method that can render realistic novel views 

for complex scenes without per-scene optimization. 

Our approach enhances the performance of traditional 

multi-view geometry architectures using convolutional 

attention modules and a cost volume fusion mechanism. 

It constructs a geometric neural field f or s cene repre-

sentation and assists the neural network inferring the 

scene. Multi-head Attention is used to aggregate infor-

mation from the source views, enabling the synthesis of 

realistic images from new viewpoints. We believe that 

more advanced multi-view stereo geometry techniques 

may extend the application of our method to surround-

shooting source views and reduce artifacts in weakly 

textured regions.
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