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Abstract Recently, works based on transformer networks
show great progress in monocular depth estimation task, but
they often overlook the invaluable invariances and priors in
the scene space, thus leading to the loss of details in depth
estimation. To tackle this problem, a transformer architecture
is proposed with a depth guidance decoder, which utilizes
multi-scale depth guidance layers in the decoding phase.
Compared to existing methods, our proposed depth guid-
ance layers introduce the regularity of the scene into the
network and significantly improve the estimation accuracy.
A large number of experiments and ablation study show that
our proposed method achieves the state-of-the-art results on
challenging benchmarks and can converge faster than other
architectures.

Keywords Machine Learning, Transformer, Depth Estima-
tion, Monocular Depth Estimation

1 Introduction
Over the last decade, neural networks have led to significant
advancements in 3D computer vision field, such as multi-
view stereo [1], novel view synthesis [2], visual simultaneous
localization and mapping [3], etc. Among several 3D vision
tasks, one of the challenging tasks to solve is the monocular
depth estimation problem. This is a problem of estimating a
high quality dense depth map from a single RGB input image.
It is a classical problem in computer vision that is essential
for numerous computer vision applications [4][5][6][7]. At
the same time, it is an ill-posed problem. Given an image,
there are infinite possible world scenes may have produced it.
Of course, most of these are physically impossible for real-
world spaces, and thus the depth may still be predicted with
respectable accuracy. However, a good solution to monocular
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(a) Input RGB (b) Adabins[8] (c) Ours

Fig. 1 Illustration of our work: Left: input RGB images. Middle:
depth predicted by Adabins[8]. Right: depth predicted by our
proposed mulit-scale depth guidance transformer. Note that the
predicted depth in our work can present more details.

depth estimation is highly desirable in robotics, self-driving
vehicles or computer vision fields performed in 3D pace[9].

In recent years, significant advancements have been made
in machine learning based depth estimation methods. Eigen
et al.[10] introduced a multi-scale deep network that employs
a global network for coarse depth prediction and a local
network for refining depth prediction.

Motivated by the work of Eigen et al.[10], convolution
networks have been widely utilized for depth estimation. For
instance, CLIFFNet[11] employs a multi-scale fusion convo-
lutional framework to generate high-quality depth estimation
results. More recently, Transformer networks have garnered
considerable attention in the computer vision field. Build-
ing on the success of recent applications of Transformers to
solve computer vision problems, DPT[12] propose to replace
convolution operations with Transformer layers, leading to
further improvements in network performance.

While the methods mentioned above have significantly
enhanced depth prediction accuracy, they often suffer from
slow convergence due to the treatment of monocular depth
estimation as a regression task. Another line of research
introduces the discretization of continuous depth into multi-
ple intervals, framing deep network learning as a per-pixel
classification problem. For instance, DORN[13] introduces
an efficient depth estimation loss for ordinal classification
and incorporates the ASPP[14] module to extract multi-level
information. Building on this work, Diaz[15] softens the
classification target during training, leading to performance
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Fig. 2 Overview of our proposed network architecture. Our archi-
tecture consists of three major components: an EfficientNet B5[16]
encoder block, our proposed depth guidance decoder block(DG-
Decoder), a transformer block based on vision transformer.The input
to our network is an RGB image of size H ×W × 3, and the output
is a h× w × 1 depth image.

improvement. Additionally, some approaches [17] reframe
the problem as classification regression to alleviate the visual
artifacts associated with the discretization of depth values,
especially at sharp depth discontinuities. In pursuit of further
improving model performance, Adabins [8] introduces an
adaptive bin strategy, a critical component for accurate depth
estimation. However, methods relying on bin strategies often
overlook the invaluable real-world geometric cues, such as
surface normal constraints or planar relationships, which is
essential in monocular depth estimation problems.

2 RELATED WORK
In monocular depth estimation, supervised methods take a
single RGB image and use depth data measured by range sen-
sors such as RGB-D cameras or multi-channel laser scanners
as the ground truth for training. Eigen et al.[10] introduced a
convolutional architecture that initially learns coarse global
depth predictions in one part of the network and progressively
refines them using another part of the network. In contrast
to earlier single-image depth estimation approaches, their
network learns representations directly from raw pixels, elim-
inating the need for hand-crafted features. Building on the
success of this approach, many CNN-based methods have
treated monocular depth estimation as a regression task, aim-
ing to predict dense depth maps from a single RGB image
[10][18][19]. In our work, we utilize multi-scale deep guid-
ance layers to learn dense features at different scales through
supervised learning.

Recently, transformer networks are gaining much atten-
tion as a viable building block outside of their traditional
use in NLP tasks and are incorporated into computer vision
tasks[20][21][22]. We propose to leverage two Transformer
encoders as a building block for recovering the decoder fea-
ture. It leverages the idea of transforming the depth prediction

problem into a bins classification problem.
Encoder-decoder networks have played a pivotal role in

addressing various vision-related challenges, including image
segmentation [1], optical flow estimation[23], and image
restoration [24]. In our work, we employ an encoder-decoder
architecture to extract depth information using our depth
guidance layers and estimate depth through a transformer
network.

In this paper, to introduce geometry guidance to neural
network, we propose a network architecture that utilizes
novel multi-scale depth guidance layers in the decoding
phase. We let the multi-scale depth guidance layers to learn
6-dimensional plane coefficients and use them together to
reconstruct depth decoder feature in the decoder for the
transformer to estimate final depth. As a consequence of
multi-scale layers combination, individual spatial cells in each
resolution are distinctively trained while the training progress.
And they can concatenate together to compensate each other
by different scale feature. Experiments on challenging datasets
demonstrate that our proposed method achieves the state-of-
the-art results.

3 PROPOSED METHOD
Fig. 2 shows an overview of our proposed depth estimating
architecture. Our architecture consists of three major compo-
nents: 1) an encoder block built on a pretrained EfficientNet
B5 [16] encoder. 2) our proposed decoder block consists of
multi-scale depth guidance layers. 3) a transformer architec-
ture use two transformer encoders. The main contribution
of our work is the multi-scale depth guidance layers in the
decoder, which introduce the invaluable geometry invariances
and priors to our neural network architecture.

3.1 Motivation

Monocular depth estimation involves the task of learning a
dense mapping, denoted as fθ : I(u, v) −→ D(u, v), where
I represents the input image with dimensions H × W , D
corresponds to the depth map of the same resolution, and
(u, v) represent pixel coordinates within the image space.
The parameter set θ defines the mapping function f . In
supervised learning, each input image I in the training set
is associated with a ground-truth depth map D∗. During the
training process, the parameters θ are optimized to minimize
the loss between the predicted depth and the ground-truth
depth across the entire training dataset Γ. This optimization
process can be formally expressed as follows:

min
θ

∑
(I,D∗)∈Γ

L(fθ(I), D∗) (1)
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Fig. 3 Overview of the proposed depth guidance decoder. The decoder is composed of dense feature extractor (extract the encoder features),
depth guidance layers and their dense connection for final depth decoder features estimation. Note that the outputs from multiple scale
depth guidance layers have the same resolution H/4 but use different scale depth guidance. We also use skip connections from dense feature
extractor to link with internal outputs in the decoding phase with corresponding spatial resolutions.

where L is a loss function that penalizes deviations between
the prediction and the ground truth. Additionally, with a
depth map D and knowledge of the camera intrinsics, we
can perform the process of backprojection for each pixel into
3D space. Utilizing the pinhole camera model and provided
parameters such as the focal lengths (fx, fy) and the principal
point (u0, v0), we can map each pixel p = (u, v)T to a
corresponding 3D point P = (X,Y, Z)T using the following
transformation:

X =
Z(u− u0)

fx
, Y =

Z(v − v0)

fy
, Z = D(u, v) (2)

Recent research has focused extensively on designing pow-
erful neural networks, often overlooking the valuable ge-
ometric guidance inherent in spatial scenes. In our work,
we incorporate this geometry guidance into our network as
follows.Suppose we have a backprojected 3D point P that cor-
responds to a planar component of the 3D scene. The equation
of the associated plane in point-normal form is expressed as
n · P + d = 0, where n = (a, b, c)T represents the normal
vector to the plane, and −d denotes the plane’s distance from
the origin. Substituting P from Eq. (2) into the point-normal
equation yields:

1

Z
=

−a

fxd
u+

−b

fyd
v +

1

d

(
a

fx
u0 +

b

fy
v0 − c

)
(3)

This equation reveals that, for image regions depicting planar

3D surfaces, the inverse depth is an affine function of pixel
position. The coefficients in this function encode both the
camera intrinsic parameters and the properties of the 3D
plane. We reformulate Eq. (3) as:

Z =

(
−a

fxd
u+

−b

fyd
v +

1

d

(
a

fx
u0 +

b

fy
v0 − c

))−1

(4)

Based on this assumption, we employ a convolutional neural
network to learn the parameters in Eq. (4), which enhances
the effectiveness of our neural network.

3.2 Multi-Scale Depth Guidance Decoder

The central concept of our work lies in efficiently defining
the relationship between internal features and decoder output.
Diverging from conventional methods that rely on simple
nearest-neighbor upsampling layers and skip connections
during the decoding stage to restore the original resolution,
we introduce novel multi-scale depth guidance layers. These
layers leverage geometric prior assumptions to extract features
effectively, enabling us to achieve the desired resolution and
obtain the decoder features. Our decoder architecture with
multi-scale depth-guided layers can be seen in Fig.3. Given
a feature map having spatial resolution H/4, our proposed
layers estimate for each spatial cell the coefficients that fit a
locally defined k×k(k ∈ {1, 2, 4, 8}) patch on the resolution
H/4, then they are concatenated together and upsampled for
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Fig. 4 The depth guidance layer. We use a stack of 1 × 1 convolutions to get the 6D coefficients estimations. (i.e., H/k×H/k×6). Then the
channels are split to pass through two different activation mechanisms to ensure coefficients’ constraint. Finally, they are fed into the depth
guidance module to compute depth estimation features.

the estimation of the final decoder features.
With the geometry guidance as Eq. (4), we propose our

depth guidance layer as Fig.4. We regard the first two channels
of the encoded feature map as the angles and convert them
to unit normal vectors by following equations, since a unit
normal vector has two degrees of freedom (i.e., polar and
azimuthal angles θ, ϕ).

a = sin(θ) cos(ϕ), b = sin(θ) sin(ϕ), c = cos(θ) (5)

Finally, they are concatenated again and used for estimation
of Z using Eq. (4).

We designed a depth guidance layer with multiple scale
sizes (k × k(k ∈ {1, 2, 4, 8})). Our goal is to enable the
learning of multi-scale features across different regions. By
utilizing features from the same spatial location at different
scales to produce decoder features, we aim to capture global
information at coarser scales and local details at finer scales.
Additionally, these different scale features can interact with
each other to extract depth-related features.

During training with depth guidance layers, details for
regions would be learned at fine scales(1, 2) while major
structures at coarse scales(4, 8).

3.3 Bins Transformer architecture

We design our bins transformer architecture based on the idea
of transforming the regression problem into a classification
problem as Fig. 5 shows. Following Adabins[8], we use vision
transformer ViT[22] to extract bins width vector information
and range attention feature map. However, different from
Adabins[8], we use two different vision transformer architec-
ture to estimate bins width and range attention feature maps,
which can avoid the two results blemishing each other. The
adaptive bins transformer encoder learns an adaptive bins
vector for each decoder feature map adaptively. The attention

maps encoder learns different attention maps for each bins
vector. Then we transform the bins vector into bin centers
and the attention maps into probabilities scores. The depth is
estimated using bin centers and probabilites scores as Eq. (7)
shown.

With the bins vector, we calculate depth-bin-centers as
follows:

c(bi) = dmin + (dmax − dmin)(
bi
2
+

i−1∑
j=1

bj) (6)

Range attention maps are passed through a 1 × 1 convolutional
layer to obtain n channels which can be interpreted as proba-
bilities scores pk, k = 1, ..., N at each pixel.Finally, the final
depth value d̃ is calculated from the linear combination of
probabilities scores pk at that pixel and the depth bin centers
c(k) as follows:

d̃ =
N∑

k=1

c(bk)pk (7)

3.4 Training Loss

Following Adabins[8], we define two loss function for bins
and pixels loss then add together to get the final loss.First we
use a scaled version of the Scale-Invariant loss introduced by
Eigen et al.[10] as follows:

Lpixel = α

√
1

T

∑
i

g2i −
λ

T 2
(
∑
i

gi)2 (8)

where gi = log d̃i − log di and the ground truth depth di and
T denotes the number of pixels.This loss function calculate
the loss of the estimated depth and the ground truth, which
is the main loss function. We experimented with different
combinations of hyperparameters α and λ, including α =

1, 10, 20, 50, 100 and λ = 0.8, 0.85, 0.9, 1. Finally we set
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Fig. 5 An overview of the Adaptive bins transformer block. The input to the block is the decoder feature maps generated by depth
guidance decoder. The block includes two transformer encoders.An adaptive bins transformer encoder that is applied on patch embeddings
of the decoder feature for the purpose of learning to estimate bin widths. An attention maps Transformer encoder that is applied on patch
embeddings of the input for the purpose of learning a set of convolutional kernels needed to compute attention maps.

α = 10 and λ = 0.85, which achieved the best result.
Chamfer Loss[25] is important in 3D object reconstruction

using point clouds. It defines the distance between two set
S1, S2 as:

d(S1, S2) =
∑
x∈S1

min
y∈S2

∥x− y∥22+
∑
y∈S2

min
x∈S1

∥x− y∥22 (9)

And we use the bi-directional Chamfer Loss to encourage the
distributuion of bin centers to follow the distribution of depth
values in the groud truth as:

Lbins = chamfer(X, c(b)) + chamfer(c(b), X) (10)

Finally, we define the final loss as follows:

Ltotal = Lpixel + βLbins (11)

We experimented with different hyperparameters β, including
β = 0, 0.1, 0.2, 0.5. Finally we set β = 0.1, which achieved
the best result.

4 EXPERIMENTS
We conducted experiments on the standard depth estimation
from a single image datasets. In the following, we first briefly
describe the dataset and the evaluation metrics, and then
present comparisons to the state-of-the-art in supervised
monocular depth estimation.

4.1 Datasets

NYU Depth v2 is a dataset that provides images and depth
maps for different indoor scenes captured at a size of 640 ×
480 [37]. The dataset contains 120K training samples and 654
testing samples. We train our network on a 20K subset. The
depth maps have an upper bound of 10 meters. We evaluate
our network on the pre-defined center cropping by Eigen
et al.[10]. At test time, we compute the final output by taking

the average of an image’s prediction and the prediction of its
mirror image which is commonly used in previous work.

KITTI (Karlsruhe Institute of Technology and Toyota Tech-
nological Institute) is one of the most popular datasets for use
in mobile robotics and autonomous driving[38].It consists of
hours of traffic scenarios recorded with a variety of sensor
modalities, including high-resolution RGB, grayscale stereo
cameras, and a 3D laser scanner. The RGB images have a
resolution of around 1241 × 376. We train our network on a
subset of around 23K images. The depth maps have an upper
bound of 80 meters. The final output is computed by taking
the average of an image’s prediction and the prediction of its
mirror image.

4.2 Evaluation metrics

We use the standard six metrics to compare our method
against state of-the-art. These error metrics are defined
as: average relative error (REL): 1

n

∑p
n

|yp−ŷp|
y ; root

mean squared error (RMS):
√

1
n

∑p
n(yp − ŷp)2; average

(log10) error: 1
n

∑p
n |log10(yp)− log10(ŷp)|; threshold ac-

curacy (δi) : % of yp s.t. max(
yp

ŷp
,
ŷp

yp
) = δ < thr for

thr = 1.25, 1.252, 1.253; where yp is a pixel in depth image
y, ŷp is a pixel in the predicted depth image ŷ, and n is
the total number of pixels for each depth image. And for
KITTI dataset, we use the two standard metrics: Squared
Relative Difference (Sq. Rel): 1

n

∑n
p

∥yp−ŷp∥2

y ; and RMSE

log:
√

1
n

∑n
p ∥log yp − log ŷp∥2.

4.3 Comparison to the state-of-the-art

We train and evaluate our models on the NYU Depth V2
dataset and the KITTI dataset. As shown in Table 1 and
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(a) Input RGB (b) Adabins[8] (c) Ours

Fig. 6 Illustration of our work: Left: input RGB images. Middle: depth predicted by Adabins[8]. Right: depth predicted by our proposed
mulit-scale depth guidance transformer. Note that the predicted depth in our work can present more details.
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Table 1 QUANTITATIVE RESULTS ON NYU DEPTH V2.THE BEST AND THE SECOND-BEST ARE HIGHLIGHTED.
Method δ1↑ δ2↑ δ3↑ REL↓ RMS↓ log10↓

Eigen et al.[10] 0.769 0.950 0.988 0.158 0.641 -
Lee et al.[26] 0.815 0.963 0.991 0.139 0.572 -
Fu et al.[13] 0.828 0.965 0.992 0.115 0.509 0.051
Qi et al.[27] 0.834 0.960 0.990 0.128 0.569 0.057
Adabins[8] 0.874 0.953 0.967 0.130 0.418 0.141

Focal-WNet[28] 0.875 0.976 0.989 0.116 0.398 0.048
VNL[29] 0.875 0.980 0.995 0.111 0.416 0.048

Ours 0.896 0.985 0.997 0.106 0.370 0.045

Table 2 QUANTITATIVE RESULTS ON KITTI.THE BEST AND THE SECOND-BEST ARE HIGHLIGHTED.
Method δ1 ↑ δ2 ↑ δ3 ↑ REL↓ Sq Rel↓ RMS↓ log10↓

Liu et al.[30] 0.680 0.898 0.967 0.201 1.584 6.471 0.273
Eigen et al.[10] 0.702 0.898 0.967 0.203 1.548 6.307 0.282

Godard et al.[31] 0.861 0.949 0.976 0.114 0.898 4.935 0.206
Kuznietsov et al.[32] 0.862 0.960 0.986 0.113 0.741 4.621 0.189

SC-Depth[33] 0.873 0.960 0.982 0.114 - 4.706 0.191
DNet[34] 0.877 0.960 0.981 0.113 - 4.812 0.191

Gan et al.[35] 0.890 0.964 0.985 0.098 0.666 3.933 0.173
Focal-WNet[28] 0.926 0.986 0.997 0.082 - 3.076 0.120

Fu et al.[13] 0.932 0.984 0.994 0.072 0.307 2.727 0.120
Yin et al.[36] 0.938 0.990 0.998 0.072 - 3.258 0.117
Lee et al.[26] 0.956 0.993 0.998 0.059 0.245 2.756 0.096

Ours 0.963 0.995 0.999 0.058 0.195 2.365 0.025

Table 2, our models achieve state-of-the-art performance in
all metrics compared to previous monocular depth estimation
methods. Our models also outperform the previous bins
transformer based method [8] by a large margin. As Fig. 6
shown, the predicted depth in our work can present more
details than others. This shows that our depth guidance based
transformer model is better at to capturing local context
information, which mainly benefits from our multiple scale
design. The multi-scale depth guidance layers can concatenate
different scale context information and compensate each other.
Then the extracted global and local features are used for final
depth estimation together.

When training our network on the dataset, we observe
that our network converge faster than Adabins[8]. As Fig. 7
shown, our network takes just 30k iterations(10 epoches) to
achieve the state-of-the-art results while Adabins[8] takes 75k
iterations(25 epoches). We think it benefits from the depth
guidance layers which helps the network learn depth feature
faster.

4.4 Ablation study

For our ablation study, we evaluate the influence of the
following design choices on our results:

Fig. 7 An overview of the a1 metric in training progress of
Adabins[8] and ours network. Adabins uses 25 epoches for training,
ours just uses 10 epoches and converges in less time.

Depth guidance decoder: We first evaluate the impor-
tance of our depth guidance decoder module. We remove the
multi-scale depth guidance decoder(MDG-Decoder) from the
architecture and use a normal decoder(N-Decoder) to predict
the feature map. The normal decoder use the same architec-
ture as depth guidance decoder only without the multi-scale
depth guidance layer. Table 3 shows that we achieve greater
performance gain by employing the proposed depth guidance
decoder (3rd row, 4th row) compared to the normal decoder
architecture (1st row, 2nd row). This result indicates that some
of the predictions are improved and our network can improve
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Table 3 ABLATION STUDY OF THE PROPOSED METHOD ON NYU DEPTH V2. THE BEST AND THE SECOND-BEST ARE
HIGHLIGHTED.

Variant δ1 ↑ δ2 ↑ δ3 ↑ REL ↓ RMS ↓ log10 ↓
N-Decoder + S-ViT 0.882 0.981 0.995 0.113 0.379 0.047
N-Decoder + D-ViT 0.887 0.982 0.996 0.109 0.377 0.046

MDG-Decoder + S-ViT 0.890 0.984 0.997 0.110 0.374 0.046
MDG-Decoder + D-ViT 0.896 0.985 0.997 0.106 0.370 0.045

the prediction in more details situation.
Transformer encoder effect: We then evaluate the effect of

our double vision transformer encoder(D-ViT) design. We
remove the adaptive bins encoder and the attention maps
encoder from the network and use just a single vision trans-
former encoder(S-ViT) to predict the bins vector and range
attention maps. Table 3 shows that the architecture with dou-
ble transformer encoder (2nd row, 4th row) performs better
than other variants(1st row, 3th row). This result indicates
that using different transformer encoder for bins vector and
attention maps can avoid the two prediction from blemishing
each other, which improves the accuracy of our net work.

5 CONCLUSIONS
In this work, we have presented a depth guidance layers based
monocular depth estimation network and achieved state-
of-the-art results. Benefiting from recent advances in deep
learning, we design a network architecture that uses novel
depth guidance layers and transformer encoder, giving an
explicit relation from encoder feature maps to the geometry
guidance decoder feature maps for better training of the
network. By deploying the proposed layers on multiple scales
in the decoding phase, we gained an improved experimental
results on challenging benchmark. In future work, we would
like to investigate how to introduce different scenes geometry
guidance to improve the accuracy and generalization ability
of neural network in depth estimation field.
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